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■ Abstract We review the effective field theories (EFTs) developed for few-nucleon
systems. These EFTs are controlled expansions in momenta, where certain (leading-
order) interactions are summed to all orders. At low energies, an EFT with only contact
interactions allows a detailed analysis of renormalization in a nonperturbative context
and uncovers novel asymptotic behavior. Manifestly model-independent calculations
can be carried out to high orders, leading to high precision. At higher energies, an EFT
that includes pion fields justifies and extends the traditional framework of phenomeno-
logical potentials. The correct treatment of QCD symmetries ensures a connection with
lattice QCD. Several tests and prospects of these EFTs are discussed.
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1. INTRODUCTION

1.1. Why Effective Theories?

Nuclear systems have often been described as pathologically complicated. The
forces between the constituent nucleons are strong and noncentral, and the rela-
tively small binding found in nuclei results from detailed cancellations between
much larger contributions. Given our incomplete knowledge of the basic inter-
action among nucleons, especially at short distances, and the problems involved
in the numerical solution of the Schr¨odinger equation for systems with many
fermions, one can understand why nuclear structure remains an unsolved prob-
lem after decades of intense effort. This seems even more frustrating when one
remembers that all nuclear processes are encoded in the QCD Lagrangian and that
parameter-free predictions could, in principle, be obtained.

Despite all the difficulties, enormous progress has been made throughout the
years by the use of models that capture different aspects of nuclear phenomena.
One dissatisfying aspect of these models, however, is their ad hoc nature and the
presence of uncontrolled approximations. These models are not derived from any
basic principle (and certainly not from QCD) and contain information that comes
from decades of trial and error hidden behind apparently arbitrary choices of some
contributions over others. Each new improvement involves the same process of
educated guesses, and one is never sure what a reasonable error estimate would
be. Effective field theories (EFTs) are useful because they provide a systematic
expansion in a small parameter that organizes and extends previous phenomeno-
logical knowledge about nuclear processes, and they provide a rigorous connec-
tion to QCD. They also help with more technical but important issues that have
plagued nuclear physics in the past, including gauge invariance, “off-shell” ef-
fects, and relativistic corrections, by borrowing heavily from the arsenal of field
theory.

1.2. What is an Effective Theory?

Most of the uncertainty in nuclear processes comes from the short-distance in-
teractions (.1 fm) between two or more nucleons (and photons, leptons). Even
when one is interested only in low-energy phenomena, the short-distance con-
tributions can be important. In perturbation theory, for instance, the influence of
short-distance physics on low-energy observables is manifested by ultraviolet-
divergent integrals, that is, by the dominance of high-momentum modes over
low-momentum ones.
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Sensitivity of large-distance observables to short-distance physics is not un-
usual; it is, in fact, pervasive in many fields of physics. One way of dealing with it
is to model the short-distance physics and solve the problem by using a microscopic
approach. In the case of nuclear systems, this would lead either to a calculation
of nuclear processes directly from QCD (which is currently impossible and would
be, even if possible, highly inefficient), or by recourse to meson-exchange or quark
or skyrmion models. Another approach is the use of effective theories (1).1 Before
introducing the particular case used in nuclear physics, let us consider effective
theories in general.

Suppose we want to study the low-energy behavior of a system described by
some theory that we will call the “fundamental” theory. In the path-integral formal-
ism, we can imagine integrating over the high-momentum modesk > 3, where the
scale3 is chosen to be much larger than the momentum scale we want to study.
The result of this partial integration over the high-momentum modes will be a
complicated Lagrangian containing an infinite number of terms. This Lagrangian,
called the effective Lagrangian, will generally be nonlocal, but this nonlocality,
arising from the momentak > 3, will be restricted to a spatial scale.1/3. One
can thus expand those interaction terms in a Taylor series in powers of∂/3, where
∂ stands for a derivative of the fields. The coefficients of this expansion do not de-
pend on the soft momenta carried by the fields of the effective theory and describe
the hard physics within the scale 1/3. They are, however, functions of3 (the
coupling constants “run”). The soft (k< 3) and hard (k> 3) physics is factorized
in the effective Lagrangian. These effective-Lagrangian coefficients are usually
called low-energy constants (LECs), since they encode all we need to know about
the fundamental theory in order to compute low-energy observables. Notice that,
up to this point, no approximation was made and the effective Lagrangian contains
exactly the same information as the fundamental one. Calculations of observables
done using the effective Lagrangian will contain two sources of3 dependence.
One is the implicit dependence contained in LECs; the other appears in the cutoff
that should be used in those computations. These two sources of3 dependence,
by construction, cancel each other.

What is the advantage in separating the integration over momentum modes
in two steps? The answer to this question depends on the situation at hand. In
problems where the integration over the high-momentum modes can be explicitly
accomplished, the effective Lagrangian is a bookkeeping device that allows us to
perform approximations in a very efficient way. Examples include nonrelativistic
QED (2), heavy-quark effective theory (3), and high-density QCD chiral pertur-
bation theory (4). In other cases, such as the nuclear systems considered here,
we will not be able to explicitly integrate the high-momentum modes. We can,

1The term “effective theories” has other meanings besides the one articulated in this review.
“Effective Lagrangian” sometimes means the Lagrangian that includes all quantum correc-
tions. Other times “effective theory” refers to any model useful at low energies, whether or
not there is a separation of scales and a rigorous expansion in powers of the momentum.
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however, determine the effective Lagrangian by a combination of self-consistency
requirements and experimental data.

We start by considering the most general Lagrangian that is consistent with the
symmetries of the underlying theory. This Lagrangian contains an infinite number
of arbitrary constants. For a fixed3, different values of the LECs describe different
underlying theories. Just one set of these values will make our low-energy theory
reproduce the same observables as the fundamental theory. We then resort to an
approximation scheme: We expand the low-energy observables in powers of the
small parameterQ/3 ¿ 1, whereQ is a low-energy scale such as the momenta
of the external particles or light masses. Now the factorization between high- and
low-momentum contributions comes in handy. Instead of using the full effective
Lagrangian, with its infinite number of terms, we can argue that, at a given order
in the Q/3 expansion, only a finite number of terms will contribute, since the
remaining terms will include many powers of∂/3 ∼ Q/3. We are left with a
much simpler Lagrangian, with a finite (ideally, small) number of coefficients that
can be determined from some experimental data (or from the fundamental theory,
if possible, or models) and used to predict others. Increasing the order inQ/3 of
a calculation will increase its precision but may also bring other LECs that will
have to be determined by experiment.

The argument that connects the order of the expansion in powers ofQ/3 and
the terms in the effective Lagrangian that need to be included at that order (called
“power counting”) varies case by case but always includes two steps. The first
step is to estimate the size of diagrams, given the size of the LECs appearing
on the vertices, and it is simply done by dimensional-analysis arguments. The
second step is to estimate the size of the LECs themselves. We first determine their
running, that is, their dependence on3, by requiring physical observables to be
3-independent (at the order inQ/3 of our approximation). The information about
the evolution of the LECs is not by itself enough to determine them, since we do
not know their initial conditions. Although for some particular value of3 one
LEC might be passing through zero, this is very unlikely. We assume that a typical
size for a LECC(3) is C(3) ∼ C(23) − C(3), that is, the LECs should have the
same order of magnitude as the size of their running. In perturbative settings, this
principle amounts to little more than dimensional analysis and is known as naive
dimensional analysis (5). Strictly, this provides only a reasonable lower bound,
so one should be aware of possible violations of this principle. This estimate, of
course, is used only in arguing that some terms in the effective Lagrangian will
have a negligible effect and can be dropped. The values of the LECs actually kept
in the calculation are determined by experimental data. Notice that, for a given
set of symmetries and low-energy degrees of freedom, there is no guarantee that
the effective Lagrangian can be truncated at any order inQ/3, that is, there is no
guarantee that a consistent power counting can be found.

The version of the EFT method sketched above is sometimes called the Wil-
sonian effective theory. Another version of the same idea is the “continuum”
effective theory (3). The continuum effective theory reproduces the same vertices
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and propagators as the full theory at low energy. The two theories differ in the
ultraviolet region, but this difference can always be absorbed in the values of the
LECs. The continuum effective theory’s technical advantage over the Wilsonian
approach resides in being able to integrate over all momenta (used in conjunction
with dimensional regularization), and not only overk< 3. This makes it simpler
to maintain gauge, chiral, and spacetime symmetries, and to avoid power-law
divergences that sometimes complicate power counting.

1.3. How?

EFTs can be used in a few different ways in nuclear physics. Historically, the
first one was to set the separation scale3 around theρ-meson mass and keep
as low-energy degrees of freedom the pions and the nucleons2 (and maybe the
1 isobars), as well as photons and leptons (6–11). This approach builds on the
success of chiral perturbation theory (χPT) in the mesonic and one-baryon sec-
tors. Like nuclear potential models, it describes nonrelativistic nucleons interact-
ing through a potential, but it also brings ingredients of its own, such as a small
expansion parameter, consistency with the chiral symmetry of QCD, and system-
atic and rigorous ways of including relativistic corrections and meson-exchange
currents.

Another application of EFT ideas in nuclear physics is made possible by the
existence of shallow bound states, that is, binding energies far below any reasonable
QCD scale (12–15). We can then set3 around the pion mass and keep as low-
energy degrees of freedom only the nucleons (and photons and leptons). At least in
the case of two- and three-body systems, the bound states will be within the range
of validity of this simpler theory. This “pionless” effective theory can be considered
as a formalization and extension of the old effective-range theory (ERT) (16) and
the work on “model-independent results” in three-body physics (17). The new
features, besides the existence of a small parameter on which to expand, appear
in a number of new short-distance contributions describing exchange currents and
three-body forces, as well as in relativistic corrections, that are transparent in this
approach. An extra bonus is the possibility of deriving analytic, high-precision
expressions for many observables that previously required nontrivial numerical
work.

In Sections 2 and 3, we review these two approaches in few-nucleon systems,
emphasizing qualitative aspects of recent developments. In Section 4, we present
an outlook, including other approaches that are being developed for larger nuclei.
Other reviews have already covered applications of EFT ideas to nuclear physics,
with different emphasis from the present one (18). Many developments of the past
couple of years are described in Reference (19).

2Since energies are measured from the ground state with a given baryon number, slow
nucleons, despite carrying large rest-mass energy, should be considered low-energy degrees
of freedom.
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2. EFFECTIVE FIELD THEORY
WITHOUT EXPLICIT PIONS

2.1. The Two-Nucleon System and the Nontrivial Fixed Point

2.1.1. TWO-NUCLEON SCATTERING Let us now apply the ideas outlined in the pre-
vious section to the specific case of two nucleons with momentumkbelow the pion
scalek < mπ (see Reference (15) for more details). We start by writing the most
general Lagrangian that involves only two nucleons (electroweak external currents
will be included later). A system with two nucleons with zero angular momentum
(L = 0) can exist in a spin singlet (1S0) or spin triplet (3S1) state so there are two
independent interactions with no derivatives,

L = N†
(
i ∂0 +

E∇2

2M
+ . . .

)
N − C0t

(
NT Pt N

)†(
NT Pt N

)
− C0s

(
NT PsN

)†(
NT PsN

) + . . . , 1.

where

Pi
t = 1√

8
σ2σ

i τ2,

PA
s = 1√

8
τ2τ

Aσ2 2.

are the projectors in the triplet and singlet spin-isospin states (σs act on spin space,
τs on isospin space),M is the nucleon mass, andN is the nucleon field. The dots
in Equation 1 stand for terms with more derivatives that, as we argue below, will
be subdominant.

The nucleon-nucleon (NN) scattering amplitude can be written in terms of the
phase shiftδ as

T = 4π

M

1

k cot δ − ik

= 4π

M

1

− 1
as

+ r0s
2 k2 + · · · − ik

. 3.

It can be shown that, for potentials of range∼R (R ∼ 1/mπ in our case),k cotδ
is an analytic function aroundk= 0 and has a cut starting atk2 ∼ 1/R2, so
it is well approximated by a power series as shown in the last line of Equa-
tion 3. The parameteras (r0s) is called the singlet scattering length (singlet ef-
fective range). For notational simplicity, we focus for now on the spin singlet
channel.

Figure 1 shows the graphs that contribute toNN scattering generated by the
Lagrangian in Equation 1. TheL-loop graph factorizes into a power,
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Figure 1 Graphs contributing to the leading-orderNNscattering amplitude.

L-loop graph∼ (c3 − ik)L , 4.

each one containing a linearly divergent piece and the unitarity cutik (in the center-
of-mass system with total energyk2/M). The loop integral is linearly divergent
and the coefficientc is dependent on the particular form of the regulator used, that
is, the particular form by which the high-momentum modes are separated from the
low-momentum ones. Using a sharp momentum cutoff, for instance, we havec =
2/π , using dimensional regularization,c = 0. The sum of all graphs in Figure 1
is a geometrical sum that gives

T = 4π

M

1

− 4π
MC0s

+ c3 − ik
. 5.

We see then that terms shown explicitly in Equation 1 reproduce the first term of
the effective range expansion. The addition of terms with more derivatives will
reproduce further terms in the effective range expansion.

We can learn some important lessons from this simple calculation. Let us con-
sider two separate situations.

■ Natural case:For a generic potential with rangeR, the effective-range pa-
rameters typically have similar size,a ∼ r0 ∼ R. Using dimensional regular-
ization,C0 can be chosen to beC0 = 4πa/M (this choice is called minimal
subtraction). The effective theory is valid fork < 1/R and, in this range,T
can be expanded as

T = 4π

M

[
−a + ika2 +

(
a2r0

2
+ a3

)
k2 + . . .

]
. 6.

BecauseC0 ∼ a, there is a one-to-one correspondence between the order in
theka expansion, the number ofC0s vertices, and the number of loops in a
graph. The leading order (LO) is given by one tree-level diagram, the next-to-
leading order (NLO) by the one-loop diagram, and next-to-next-to-leading
order (N2LO) by the two-loop diagram involvingC0 and one tree-level dia-
gram with a two-derivative vertex (not shown in Equation 1), and higher or-
ders are treated similarly. We have then a perturbative expansion, even though
the microscopic potential can be arbitrarily strong. If one uses a cutoff regu-
lator, the situation is slightly more complicated. Choosing3 ∼ 1/R ∼ 1/a,
we note that the most divergent piece of the multi-loop graphs is as large
as the tree-level graph and must be resummed to all orders, whereas the
energy-dependent part containing powers ofikC0 is suppressed. The pieces
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that need to be resummed at LO merely renormalize the constantC0. The one-
to-one correspondence between the order in thekaexpansion and the number
of loops is lost in any renormalization/regularization scheme except the di-
mensional regularization with minimal subtraction. The technical advantages
arising from the use of dimensional regularization and renormalization the-
ory in this perturbative setting were used in the study of dilute gases with
short-range interactions (20).

■ Unnatural case:In the nuclear case, the scattering lengths of the twoS-wave
channels are much larger than the range of the potential. The1S0 (neutron-
proton) scattering lengthas is as = −23.714 fm and the scattering length of
the triplet (deuteron) channel3S1 is at = 5.42 fm, corresponding to momen-
tum scales of 1/as = 8.3 and 1/at = 36 MeV, respectively. Those scales
are much smaller than the pion mass,mπ ' 140 MeV, defining the range
of the nuclear potential.3 Actually, as we will see below, the potential due
to pion exchange is too weak to describe the low-energy phase shifts, and
the physics corresponding to the large scattering lengths occurs at the QCD
scaleMQCD ∼ 1 GeV, which makes the discrepancy between nuclear and
QCD scales even more startling. The origin of the fine-tuned cancellations
that lead to the disparity between the underlying scale and theS-wave scat-
tering lengths (and deuteron binding energy) is presently unknown. It does
not appear in any known limit of QCD, such as the chiral limit (mq → 0) or
large number of colors (Nc → ∞). We simply assume that this cancellation
happens, track the dependence of observables on the new soft scale 1/as,t ,
and perform our low-energy expansion in powers ofkR¿ 1 while keeping
the full dependence onkas,t ∼ 1. The singletNN scattering amplitude, for
instance, will be expanded as

T = −4π

M

(
as

1 + ikas
+ k2a2

sr0s

2

1

(1 + ikas)2
+ . . .

)
. 7.

It is challenging to reproduce an expansion of this form in the EFT. If one
uses a momentum cutoff, for instance, the chosen constantC0smust beC0s =
(4π/M)(1/as + c3)−1. The one-loop graph is then suppressed compared to
the tree-level one by a factor of∼ MkC 0s ∼ k/3, and one would naively
imagine that the LO contribution is given solely by the tree-level graph. But
there are cancellations among the graphs in Figure 1, and all these graphs
must be taken into account to reproduce the expansion ofT above (13, 14).
In theNNscattering case considered here, it is not difficult to see which graphs
must be included at each order, but in more complex situations this can be ex-
tremely tricky. A more convenient way to proceed is to use a renormalization
prescription that shifts contributions from high-momentum modes to the

3Alkali atoms used in cold atomic traps frequently have scattering lengths much larger than
their sizes. They can be made even larger by the use of a carefully tuned external magnetic
field (Feshbach resonances). All the ideas and formalisms developed to deal with this fact
in the nuclear domain have been used to study the physics of atomic traps (21, 22).
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LECs in such a way as to eliminate “accidental” cancellations between differ-
ent diagrams. One can determine which diagrams contribute at each order on
a diagram-by-diagram basis (manifest power counting). One way to do that
is to use dimensional regularization with a “power divergence subtraction”
(23).4 In this scheme, we add to and subtract from the denominator of the
bubble sum in Equation 5 an amountMµ/4π , whereµ is an arbitrary scale,
and absorb the subtracted term in a redefinition of the constantC0s(µ), which
now is a function ofµ. We have for the LO amplitude

T = −4π

M

1
4π

MC0s(µ) + ik + µ
. 8.

The constantC0s(µ) is now chosen to be

C0s(µ) = 4π

M

1
1
as

− µ
, 9.

in order to reproduce the LO piece of the expansion in Equation 7. The explicit
dependence onµcancels against the implicit dependence contained inC0s(µ).
The point of this rearrangement is that ifµ is chosen so thatµ ∼ 1/as, then
C0s(µ) ∼ 4π/Mµ and the contribution of all diagrams in the bubble sum
are of the same order, justifying the need to resum them. Let us see how this
works in some detail. If we denote the soft scales 1/as,µ, andkcollectively by
Q, the tree-level diagram is of the orderC0s ∼ 4π/MQ. The one-loop graph
contains two powers ofC0s, two nucleon propagators (each one counting as
1/(k2/M) ∼ M/Q2), and a loop integral with three powers of momentum
(∼Q3), one of energy (∼Q2/M), and the usual factor of 1/4π from the loop
integration, for a total of (4π/MQ)2(M/Q2)2Q5/4π M ∼ 4π/MQ. Thus, the
one-loop diagram is the same size as the tree-level graph. The same occurs
for the remaining diagrams, and they all have to be resummed. It is interesting
to note that this reshuffling of contributions between the divergent loop and
the LECs amounts to subtracting the poles 1/(D − 2) that would exist in
D = 2 space dimensions. One can easily go to higher orders and include terms
with derivatives in the Lagrangian. A simple calculation (again, subtracting
the pole that occurs atD = 2) leads to expressions for all the LECs in terms
of the effective-range parameters (and of the arbitrary scaleµ). For instance,
if C2n denotes the coefficient of operators with 2n derivatives,

C2s = 4π

M

r0s

2

(
1

1
as

− µ

)2

, 10.

C4s = 4π

M

r 2
0s

4

(
1

1
as

− µ

)3

+ r 3
1s

2

(
1

1
as

− µ

)2
 , 11.

4Other schemes also solve this problem (24).
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where the “shape parameter”r1s is the coefficient of the third term of the
effective-range expansion.

Theβ-function that describes the evolution of the dimensionless couplingĉ0s ≡
−MµC0s/4π is

µ
∂

∂µ
ĉ0s(µ) = ĉ0s(µ) [1 − ĉ0s(µ)] . 12.

Note the existence of two fixed points (23, 25), the trivial (perturbative) one at
ĉ0s = 0 and a nontrivial one at̂c0s = 1. Forµ ¿ 1/|as|, as appropriate to the natu-
ral case discussed above,ĉ0s is close to the trivial fixed point. Diagrams involving
moreC0s vertices are suppressed by powers ofĉ0s ¿ 1 and the system is pertur-
bative. The valuêc0s ∼ µas corresponds to the naive-dimensional-analysis value
and the effects of theC0s operator become smaller at lower energies (the operator
is irrelevant). On the other hand, for values ofµ ∼ 1/|as| or larger, adequate to
the fine-tuned case discussed here, the flow is close to the nontrivial fixed point.
Sinceĉ0s ∼ 1, the addition of moreC0s vertices is not suppressed and all graphs
containing only this vertex should be resummed. The dimensionless couplingĉ0s

goes from the naive-dimensional-analysis valueĉ0s ∼ µas to ĉ0s ∼ 1, and its effects
do not go away in the infrared (marginal operator).

Because the3S1 scattering length is also unnaturally large (and consequently
the deuteron binding is unnaturally shallow), the same power counting used in the
singlet channel applies also to the triplet channel.NNscattering in this channel is
more complicated because nuclear forces, being noncentral, mix it with the3D1

channel. New operators, starting with two derivatives, describe this mixing. Their
coefficients are determined from an expansion of the mixing angle analogous to
Equation 7. Also, the LECs are usually determined by matching to an effective-
range expansion centered on the deuteron pole, rather than onk = 0 as in the
singlet channel. The3S1 NN amplitude is parameterized as

T = 4π

M

1

−γ + ρ(k2+γ 2)
2 + · · · − ik

, 13.

whereγ 2/M is the deuteron binding energy andρ the effective-range parameter.
Explicit expressions for the leading terms in the Lagrangian and numerical values
for the LECs can be found in Reference (15).

The inclusion of external currents (photons, neutrinos, etc.) is straightforward.
All terms involving nucleons and the new fields or currents should be included,
as long as they satisfy the symmetries of the underlying theory. In the case of
photons, some of these terms are simply required by gauge invariance and are
determined by minimally coupling the photon to the nucleon Lagrangian. Their
coefficients are thus fixed byNN scattering data and gauge invariance. There are
also terms that are gauge-invariant by themselves but whose coefficients are not
determined byNN scattering data alone. They represent the physics of exchange
currents, quark effects, etc., and must be determined through some extra piece of
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experimental data. To perform the low-energy expansion, though, it is necessary
to have an a priori estimate of the size of these added terms. This estimate is
obtained by using the fact that observables should be independent of the cutoff
(or µ if one is using dimensional regularization), at least up to the order one is
computing.

Consider some two-nucleon (NN) operator of the formX = CX
2nN†N†0XE∂2nNN,

where0X is some tensor in spin-isospin space. Its matrix element onNN states
is given by the diagrams involving the operatorX “sandwiched” between twoNN
scattering amplitudes and by one-loop one-body diagrams that do not involveX.
Typically, the one-body diagram is not divergent and does not introduce anyµ

dependence,5 so the remaining graphs must beµ-independent by themselves. We
have to make a distinction now between the cases where the operatorX connects
two S-wave states, two non–S-wave states, or oneS-wave and one non–S-wave
state. In the first case, renormalization-group invariance of theNNmatrix element
of X implies

µ
∂

∂µ
CX

2n(µ)

(
T

C0(µ)

)2

= 0, 14.

whereT is the LONN scattering matrix, which isµ-independent. It then follows
that CX

2n(µ) scales as∼(µ − 1/a)−2. Similarly, for the case whereX connects
oneS-wave or noS-wave states,CX

2n(µ) scales as∼(µ − 1/a)−1 or ∼(µ − 1/a)0,
respectively. Using dimensional analysis to fix the powers of3, we then have

CX
2n(µ) ∼ 1

M(1/a − µ)α
1

32n+1−α
, 15.

whereα is the number ofS-wave states the operatorX can connect (either 0, 1
or 2).

In a nutshell, the power counting rules valid for theNNsystem are (13–15, 23):

fermion line→ M/Q2

loop → Q5

4π M

E∂ → Q

∂0 → Q2/M

C2n → 4π

M3nQn+1

CX
2n → 4π

M32n+1−α Qα
, 16.

5One exception is theNN, no-external-currentC4 operator, whose renormalization is driven
by C2. This explains the apparent discrepancy between Equation 10 and Equation 15.
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Figure 2 3S1 NN phase shift (in degrees) as function of the center-of-mass momen-
tum. The LO result is the dashed line, the N2LO is the dotted line, and N4LO is the
solid curve. The dot-dashed line is the Nijmegen phase-shift analysis. (From Reference
(15), courtesy of M. Savage.)

whereC2n is the coefficient of theNN interaction with2n derivatives,CX
2n is the

coefficient of aNN operator with external currentX and2n derivatives, and3 is
the high-energy scale3 ∼ mπ .

Using this rule, we can determine the contributions toNNscattering at any given
order. At LO, for instance, we have the series of diagrams shown in Figure 1,
with all the vertices containing no derivative. That is the only nonperturbative
resummation necessary. At NLO, we have the insertion of oneC2 operator in a
chain of C0 operators. At N2LO, we have two insertions ofC2 and one inser-
tion of C4, and so on. As an example, Figure 2 shows the resulting3S1 phase
shift and compares it to the Nijmegen phase-shift analysis (26). Analytic expres-
sions for the phase shifts (see Reference 15) suggest convergence for momenta
k. 100 MeV, which is reasonable for an EFT without explicit pions. Electromag-
netic effects in proton-proton scattering were considered in the EFT approach in
Reference (27).

Up to this point, we have considered onlyNN scattering, where the predictive
power of the pionless EFT is very small. We were able, however, to determine
many LECs using scattering data and understand the effects of the fine-tuning
on theS-wave channels. We now apply the formalism developed above to the
computation of form factors and processes that involve external currents. We omit
the diagrams that need be computed and the explicit analytic expressions that are
always available in theNN sector. They can be found in the literature cited.

2.1.2. ELECTROMAGNETIC FORM FACTORS OF THE DEUTERON The matrix element
of the electromagnetic current on the deuteron has the nonrelativistic parameteri-
zation
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〈
p′, ε j

∣∣J0
em

∣∣p, ε i
〉 = e

[
FC(q2)δi j + 1

2M2
d

FQ(q2)

(
qi qj − 1

3
q2δi j

)] (
E + E′

2Md

)
,

〈
p′, ε j

∣∣ EJk
em

∣∣p, ε i
〉 = e

2Md

[
FC(q2)δi j (p + p′)k + FM (q2)

(
δk

j qi − δk
i qj

)
+ 1

2M2
d

FQ(q2)

(
qi qj − 1

3
q2δi j

)
(p + p′)k

]
, 17.

where|p, ε i 〉 is the deuteron state with momentump and polarizationε i , Md is
the deuteron mass,q = p′ − p, and the form factors are normalized such that
FC(0) = 1 (deuteron charge),eFM(0)/2Md = µD (deuteron magnetic moment),
andFQ(0)/M2

d = µQ (deuteron quadrupole moment).
At LO and NLO, the computation ofFC(q2) involves only the constantsC0t and

C2t and is identical to the ERT calculation. At N2LO, a one-body term describing
the nucleon mean-square charge radius (〈r 2〉N) appears, which is the first devia-
tion from ERT (15). Formally, there are also relativistic corrections, but they are
suppressed by powers ofQ/M as opposed toQ/mπ and are numerically small.
Still, they can be readily computed in EFT. Defining the deuteron mean-square
charge radius by〈r 2〉d ≡ 6(dFC/dq2), one finds

〈r 2〉d = 〈r 2〉N + 1

1 − γρ

1

8γ 2
+ 1

32M2
= 4.565 fm2, 18.

to be compared with the experimental value〈r 2〉d = 4.538 fm2.
The magnetic form factorFM (q2) at LO and NLO is simply the electric form

factorFC(q2) multiplied by the isoscalar nucleon magnetic momentκn+κp, except
for a new two-body term that appears at NLO without an ERT analog,

L = −eL2i ε
i jk (NPi N)†(NPj N)Bk + h.c. 19.

The coefficientL2 can be determined through the experimental value of the
deuteron magnetic moment and, using this value, one can predict the momen-
tum dependence ofFM (q2).

The FQ(q2) form factor involves a transition between theS- andD-wave com-
ponents of the deuteron. At LO, its value is determined by anS- to D-wave transi-
tion operator whose coefficient is extracted from the asymptoticD/S ratio of the
deuteron,ηD/S. At NLO, there is a new two-body term

L = −eCQ(NPi N)†(NPj N)

(
∇ i ∇ j − 1

3
∇δi j

)
A0, 20.

whose coefficientCQ can be fitted to the experimental deuteron quadrupole mo-
ment. At N2LO, the only contribution comes from the finite size of the nucleon
charge distribution〈r 2〉N . The value ofFQ(0) is then a fit, but the momentum
dependence is an EFT prediction. The presence of a counterterm not determined
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by NNscattering at NLO indicates thatµQ is sensitive at the∼10% level to short-
distance physics not determined byNN scattering. That is probably the reason
different potential-model calculations underpredictµQ by '5%.

Other electromagnetic processes can be studied in similar fashion; the next
section shows another example. Compton scattering and deuteron polarizabilities
are discussed in References (28, 29).

2.1.3. RADIATIVE CAPTURE OF NEUTRONS BY PROTONS Then+ p → d +γ reac-
tion at low energies is a key ingredient in Big Bang nucleosynthesis calculations.
The amplitude for this process can be expanded in multipoles as

A = ieXM1Vε i jkε∗i k j εknP3 p + eXE1Vnτ2τ3σ2Eσ · Eε∗pPi ε∗i

+ eXM1S√
2

nPi [ki Eε∗ · Eε∗ − Eε∗ · Ekε∗i ] p

+ eXE2S√
2

nPi
[
ki Eε∗ · Eε∗ + Eε∗ · Ekε∗i − 2

3ε∗i Ek · Eε∗]p + . . . , 21.

wheren andp are the neutron and proton Pauli spinors,k is the photon momen-
tum, andε (ε) is the polarization of the deuteron (photon). At low energies, the
form factorXM1V dominates the cross section by a few orders of magnitude. Its
computation at LO is the same as the ERT one and underpredicts the experimental
value for thermal neutron capture by 10%. This discrepancy was long ago at-
tributed to a pion-exchange current contribution (30). In EFT (15), the same effect
is encapsulated in theNN current

L = eLM1V(NPiN)†(NPAN)δA3Bi + h.c., 22.

whose coefficientLM1V can be determined by the cold-capture cross section. The
momentum dependence is then predicted. However, for photon energies larger than
a few MeV, theXE1V form factor dominates the cross section. Up to N3LO, the
computation ofXE1V involves onlyC0t , C2t , theP-wave interaction combination
DP encountered in the polarizability calculation, andLM1V fitted at threshold. At
N4LO, some relativistic effects and a new term appear (31):

L = eLE1V(NPiN)†[N(
→∇i P̃jA − ←∇ j P̃iA)N]δA3E j , 23.

where P̃i A = σ2σi τ2τA/
√

8, which is fitted using data for the inverse reaction
d+γ → n+ p. Figure 3 shows the resulting cross section for the photodissociation
of the deuteron and compares it to data (32). The estimated error isO(Q/mπ )5 ∼
1%. These precise, analytical computations are particularly useful for Big Bang
nucleosynthesis codes.

Chen et al. analyzed a set of polarization observables in then + p → γ + d
reaction (33).

2.1.4. NEUTRINO-DEUTERON SCATTERING AND PROTON-PROTON FUSION A com-
plete set of reactions involving (anti-) neutrino breakup of the deuteron was com-
puted in the pionless EFT approach (34). Kong & Ravndal analyzed fusion and the
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Figure 3 Cross section forγ + d → n + p as a function of the
photon energy at N4LO, compared to data. (From Reference (31),
courtesy of G. Rupak.)

interplay of Coulomb interactions (35). These reactions are essential for the un-
derstanding of solar neutrino physics, since they are relevant for both production
(p + p → d + e+ + νe) and detection in heavy-water detectors (through the
neutral-currentν + d → ν + n + p and the charged-current ¯ν + d → e+ + n + n
reactions).

The weak interactions are described by the familiar neutral and charged-current
pieces

L = −GF√
2

(
l Zµ Jµ

Z + l+µ Jµ
− + h.c.

)
, 24.

with the leptonic currentsl Zµ = ν̄(1 − γ5)γµν, l+µ = ν̄(1 − γ5)γµe and hadronic
currentsJµ

− = Vµ
− − Aµ

− andJµ

Z = −2 sin2 θWVµ

0 + (1−2 sin2 θW)Vµ

3 − Aµ

0 − Aµ

3 .
The isosinglet vector (axial) currentVµ

0 (Aµ

0 ) and isotriplet vector (axial) current
Vµ

A (Aµ

A), written in terms of the nucleon fields, have contributions in the form
of one- and two-nucleon operators. The one-nucleon operators are determined by
the axial coupling constantgA = 1.26, the neutron and proton magnetic moments
κn andκp, the strange contribution to the proton spin〈s̄γ µγ5s〉, and the strange
magnetic moment of the protonµs. The two-nucleon currents contributing up to
N2LO are

Ai
a = L1A(NPiN)†(NPAN),

Ai
0 = −2i L2Aεi jk (NPiN)†(NPjN) + h.c.,

V i
a = 2i L1εi jk (NPjN)†(

→∇k + ←∇k)(NPaN),

V i
0 = 2i L2(NPjN)†(

→∇ j + ←∇ j )(NPiN). 25.
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L1 = LM1V was determined through the neutron-proton cold-capture cross sec-
tion, andL2 was determined by the value of the deuteron magnetic moment. The
parametersL2A, 〈s̄γ µγ5s〉, andµs, which are not well determined experimentally,
have a negligible impact on the cross section (<1%) due to the near orthogonality
between initial and final states in the triplet channel. The only relevant unknown in
a N2LO calculation is then the value ofL1A. Using the estimate in Equation 15, we
find L1A ∼ 4π/Mµ2 ∼ 5 fm3. Two potential-model results, one with and another
without exchange-current terms, differing by about 5%, can be reproduced by vary-
ing the value ofL1A within this range. This shows that the difference between these
calculations comes from different assumptions about the short-distance physics.
To fix this indeterminacy and, consequently, obtain predictions for theνd reac-
tions at the percent level, one must determine the value ofL1A experimentally.
One possibility is to measure one of these reactions at one energy. The other is to
extractL1A through another process sensitive to this term, such as tritiumβ-decay
or muon capture on the deuteron. The challenges involved in this extraction from
the well-measured value of the tritium lifetime are discussed below.

2.2. The Three-Body System and the Limit Cycle

Compared with the study of theNN sector, the study of 3N systems using EFT is
still in its infancy. Only now are calculations appearing for the triton-3He channel
that are accurate enough to enable precision calculations of processes involving
external currents. Those processes may turn out to be a very important way of fixing
the value of two-body LECs, which are hard to measure in the deuteron. The new
ingredients in going from two- to three-body systems are three-body interactions.
In the absence of fine-tuning, their typical size is determined by dimensional
analysis. Since they subsume physics contained within the range 1/3 ∼ 1/mπ , a
three-body force with 2n derivatives would have the typical size

L3 ∼ D2nE∂2n(N†N)3 → D2n ∼ (4π )2

M34+2n
. 26.

As in the two-body force, the fine-tuning in the two-bodyS-wave channels intro-
duces a new scaleγ ∼ 1/as that invalidates the estimate in Equation 26. We resort
to the same argument used above to estimate the size of these contributions. We
demand that observables be cutoff-independent order by order in the low-energy
expansion, which determines the running of the three-body forces if we assume that
their typical size is set by the size of their running,D2n(3) ∼ D2n(23) − D2n(3).
As mentioned above, it is unlikely thatD2n(3) is much smaller than this estimate
for a particular value of the regulator3, or that it contains a large3-independent
piece. If the inclusion of a particular LEC is necessary in order to have cutoff-
independent results (at a particular order in the expansion), this LEC needs to be
large enough to appear at that same order of the expansion.

The behavior of the doubletS-wave channel (where the triton and3He are)
is very different from that of the other channels. The physical reason is that
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this is the only channel where all three nucleons can occupy the same point in
space (two spin and two isospin states allow for a maximum of four nucleons
in the same state). A system of three bosons also displays this property and is
qualitatively similar to three nucleons in the doubletS-wave channel. In the remain-
ing channels, either the angular-momentum barrier or the Pauli exclusion principle
forbids the three nucleons to touch. One would then expect that the doubletS-wave
channel (and systems of three bosons) are much more sensitive to short-distance
physics than the other channels, an expectation that is confirmed by further analysis.

To avoid unnecessary complications, we present explicit expressions only for
the case of theS-wave three-boson system. The formulae for the nucleon cases in
the different channels can be deduced in an analogous way (see e.g., References
36–38). A convenient first step is to rewrite the action in terms of an auxiliary
“dimeron” fieldd (39),

Lbosons = N†
(
i ∂0 +

E∇2

2M
+ . . .

)
N − C0(NN)†NN− D0(NNN)†NNN+ . . .

→ N†
(
i ∂0 +

E∇2

2M
+ . . .

)
N + 1d†d

+ y(d†NN+ dN†N†) + gd†dN†N + . . . , 27.

whereC0 = y2/1 and D0 = −gy2/12. The equivalence between the two La-
grangians above can be shown by simply performing the Gaussian integral over
the auxiliary fieldd. Becaused has the quantum numbers of a two-particle bound
state, it can be used as an interpolating field for the bound state. The normalization
of the fieldd (and the value of1) is arbitrary and all the observables should be a
function only of the combinationsy2/1 andgy2/12, not ofy, g, and1 separately.

The propagator∆(p) for the dimeron field of momentump is given by the
sum of bubble graphs at the top of Figure 4. The power counting that leads to

Figure 4 LO graphs contributing to (a) the dressed propagator of the
dimeron and (b) the particle/dimeron amplitude.
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the necessity of summing all these graphs when the scattering length is large is
identical to the one discussed in connection withNNscattering. Taking the arbitrary
constant1 to scale as1 ∼ 1, we havey2 ∼ C0 ∼ 4π/MQ, and thus∆(p) scales
as∆(p) ∼ (4π/My2)(1/Q) ∼ 1. Summing all graphs, we can write

∆(p) = 1

−γ +
√

3p2

4 − ME
. 28.

Let us now consider the graphs that describe the scattering of one particle off
the bound state of two others, shown at the bottom of Figure 4. We can determine
the impact of each graph by power counting. For each additional loop, we have
two particle propagators, oned propagator, two powers ofy, and one loop integra-
tion, for a total of (M/Q2)2(1)(4π/MQ)(Q5/4π M) ∼ 1. There is no suppression
for additional loops, and all diagrams that involve an arbitrary number of particle
exchanges contribute at LO. Graphs that include the two-bodyC2 operator are sup-
pressed and start appearing at NLO. Graphs that include the three-body force may
or may not be leading, depending on the size of the three-body forces. Because at
this point we do not know how large they typically are, we provisionally include
them. The chain of diagrams to be summed, in contrast to the two-particle case,
does not form a simple geometrical series and cannot be summed analytically.

We can, however, consider the second line in Figure 4 as an equation that
determines this sum. For the bosonic case,λ = 1, we have

tk(p) = K (p, k) + 2H

32
+ 2λ

π

∫ 3

0
dqq2∆(q)

(
K (p, q) + 2H

32

)
tk(q), 29.

with

K (p, q) = 1

pq
ln

(
p2 + pq + q2 − ME

p2 − pq + q2 − ME

)
,

H (3) = g32

4My2 , 30.

wheretk(p) is the scattering amplitude with all but the outgoing single-particle line
on-shell (“half-off-shell amplitude”),k is the incoming momentum in the center-
of-mass system,p is the outgoing momentum, andME = 3k2/4 − γ 2 is the total
energy. The on-shell point is atp= k.

In the case of nucleons in the quartet channel, the same equation is obtained,
but with λ = −1/2 and some additional momentum dependence in the three-
body force (since the simple momentum-independent three-body force does not
contribute to this channel). Because all spins are parallel in the quartet channel,
only triplet two-body interactions occur and the value ofγ is determined by the
deuteron pole. The auxiliary fieldd carries the quantum numbers of the deuteron.
In the doublet case, singlet and triplet two-body interactions contribute. The analog
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of Equation 29 is a pair of coupled integral equations that, in theSU(4) limit,6

where the singlet and triplet scattering lengths are equal (or in the ultraviolet,
where 1/as, γ can be discarded), decouple into a pair of equations like Equation
29, one withλ = 1, another withλ = −1/2. Two auxiliary fields appear, one with
the quantum numbers of the deuteron, another with the1S0 quantum numbers.

In all spin channels, equations for the higher partial waves are obtained by
substituting the logarithm in the kernel by a Legendre functionQl [ pq/(p2 +q2 −
ME)]. Equation 29 is the version of the Faddeev equation (see Reference (41) for
an introduction) that is appropriate for contact interactions. It was first derived,
by very different methods, in Reference (42). It is only for separable potentials,
like the contact interactions considered here, that the Faddeev equation reduces
to a one-dimensional integral equation. This simplification reduces the numerical
work involved by many orders of magnitude.

2.2.1. MOST CHANNELS ARE EASY Let us first consider the channels in the second
group, that is, all channels but the doubletS wave. The diagrams summed by
Equation 29 are all ultraviolet finite, which suggests that there is no need to include
three-body forces to absorb the cutoff dependence, since this dependence is a
subleading 1/3 effect. The (numerical) solution confirms this. Even in the absence
of a three-body force, the phase shifts are only weakly dependent on3, andtk(k)
has a finite limit when3 → ∞. Higher-order corrections can be included either
perturbatively (as was done in the two-body sector) or nonperturbatively through
the denominator in the dimeron propagator. This last resummation amounts to
including some (but not all!) higher-order effects. It can be automatically computed
by solving a modified version of Equation 29, which is easier than performing
perturbative calculations at high orders. Calculations of the neutron-deuteron phase
shifts are presently available up to N2LO (12, 36, 37). At this order, the only inputs
areγ andr0t (for the three-body quartet channels) and 1/as andr0s (needed only for
the doublet channels). No unknown LECs appear at N3LO, so this approach can be
easily pushed to higher orders (and precision). For a flavor of the results, Figure 5
shows the predicted quartetS-wave phase shift and compares it to a phase-shift
analysis (43) (at finitek) and a scattering length measurement (44) (essentially at
k= 0).

Most of the data are not precise enough to provide a strict test of the conver-
gence of the low-energy expansion, but the zero-energy point is much better mea-
sured. The EFT calculation gives for the quartetS-wave scattering lengtha3/2 =
5.09+ 0.89+ 0.35+ . . . = 6.33± 0.05 fm (12, 42, 45), whereas the experimental
value isaexp

3/2 = 6.35±0.02 fm (44). The EFT error is probably overestimated, since
the N2LO calculation resummed some of the N3LO pieces and the remaining ones
are known to be smaller than the naive estimate (such as the effect of the two-body
shape parameter). Because the whole input in these calculations consisted of the
threshold parameters ofNNscattering, these results are universal and constitute a

6See Reference (40) for a discussion of theSU(4) limit in theNN sector.
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Figure 5 k cotδ for neutron-deuteron scattering in the quartetS-wave channel as a
function of the energy. The dashed line is the LO and the solid line the N2LO result
(36). Points are from a phase-shift analysis (43) and a near-threshold measurement
(44). (Figure courtesy of H.-W. Hammer.)

“low-energy theorem.” Any model with the correct scattering lengths and effective
ranges (barring wildly wrong phase shifts above threshold) should reproduce them,
within the estimated error. The small discrepancy with “first-generation”NN po-
tentials can be explained by the imprecise values ofas,t that those models predicted.
“Second-generation” (or “realistic”) potentials fixed this discrepancy (46).

Coulomb interactions are important in proton-deuteron scattering at small en-
ergies. Reference (47) shows that they can be easily incorporated in the quartet
channels by a simple change in the kernel of Equation 30.

2.2.2. TRITON-3HE CHANNEL AND THE LIMIT CYCLE The opposite sign ofλ in the
bosonic and quartet equations implies qualitatively different behavior of the re-
spective solutions. The most striking feature is that the solution of the bosonic
(and of theS-wave doublet) equation in the absence of a three-body force depends
sensitively on the value of cutoff used, even though, as mentioned above, there is
no ultraviolet divergence in the graphs summed. To illustrate this, Figure 6 shows
thek= 0 solutions of Equation 29 that correspond to various cutoffs (withλ = 1,
H = 0). Notice that the three-body scattering length, determined by the asymptotic
plateau on the left,tk= 0(k= 0), can take any value as one varies the cutoff within
a reasonable range.

It has been known for a long time that Equation 29 is not well-defined in the limit
3 → ∞. This disease can be shown in a variety of ways (21, 48–50). Consider
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Figure 6 Zero-energy half-off-shell amplitude for boson/two-boson scattering as a
function of the outgoing momentump, from a numerical solution of Equation 29 with
no three-body force, for several different cutoffs.

the intermediate-momentum regimeQ ¿ p ¿ 3 (remember thatQ stands for
any infrared scaleQ ∼ γ ∼ k). Up to terms suppressed by powers ofQ/3, with
the assumption thatH ∼ 1, Equation 29 reduces to (48)

tk(p) = 4√
3π

∫ ∞

0
dq

1

q
ln

(
p2 + pq + q2

p2 − pq + q2

)
tk(q). 31.

Equation 31 has two symmetries,7

tk(p) → tk(αp) (scale invariance)

tk(p) → tk(1/p) (inversion symmetry), 32.

which suggest the power-law solutiontk(p) ∼ ps. The allowed values ofs are
determined by plugging this ansatz back into Equation 31. For values ofs such
that Re(s) < 0, we find

8λ√
3s

sin πs
6

cosπs
2

= 1. 33.

For values ofλ smaller thanλc ≡ 3
√

3/4π = 0.4135. . ., the roots of Equa-
tion 33 have Re(s) < − 1 and the half-off-shell amplitude goes rapidly to zero as
p→ ∞. In the quartet channel, for instance,tk(p) ∼ 1/p3.17, which is a softer ul-
traviolet behavior than the one expected in perturbation theory,tk(p) ∼ 1/p2. For
theS-wave doublet case (or the bosonic case), though,λ = 1 and there is a pair of

7These symmetries suggest that in the limitγ, 1/as → 0 the full conformal symmetry
holds. In the two-body sector this was confirmed, even for off-shell amplitudes (51). It is
not known whether the three-body amplitude is conformal in this limit. The three-body
forces break scale invariance at the order they first appear.
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imaginary solutionss= ±is0, with s0 = 1.006. . .. The asymptotic behavior of the
half-off-shell amplitude is then

tk(Q ¿ p ¿ 3) = Asin(s0 ln p + δ), 34.

whereA andδ arep-independent numbers. This oscillatory behavior can be seen
in Figure 6.

The normalizationA is fixed by the inhomogeneous term in Equation 29. Be-
cause that is important only in the infrared regionp ∼ Q, A can be determined
only by matching Equation 34 to the solution in the infrared region. The phaseδ is
determined by matching Equation 34 to the solution in the ultraviolet region and
will depend on the ultraviolet physics [such as the value of the regulator3 and
the three-body forceH (3)]. Actually, by dimensional analysis, the3-dependence
of δ has to be of the formδ(3) = −s0 ln 3 + δ̄. If we vary 3 while keepingH
constant, as we have done so far, the dependence on the asymptotic phaseδ will
“spill over” the infrared region and change the on-shell amplitude by a factor of
O(1). On the other hand,δ does not depend on the infrared scales (k, γ , 1/as), and
so H (3) can be adjusted so thatδ = −s0 ln 3 + δ̄(H (3)) ≡ −s0 ln 3̄ is cutoff-
independent (for any value ofk), with 3̄ being a constant. Thus, the requirement
of cutoff invariance means thatH (3) runs at LO and, for generic values of3,
H (3) ∼ 1. The typical size of the three-body force is then

D0 ∼ (4π )2H

M32Q2
∼ (4π )2

M32Q2
, 35.

as opposed to the naive estimate in Equation 26. This means thatD0 is enhanced
in the presence of fine-tuning in the two-body sector by a factor of (3/γ )2. The
arbitrary parameter̄3 has to be fixed by one piece of experimental input coming
from a three-body observable.

The two-body phase shifts are not sufficient to fix the three-body physics at
LO. Another way of looking at the renormalization of the three-body system
that is more easily generalizable to higher-order calculations is to consider two
amplitudes,t3

k (p) andt3′
k (p), which are obtained by solving Equation 29 with two

cutoffs3 and3′ and the corresponding three-body forcesH (3) andH (3′). The
integral equation that determinest3′

k (p) can be written as∫ 3

0
dq

(
δ(p − q) − 2

π
q2∆(q)K (p, q)

)
t3′
k (q)

= K (p, k) + 2H (3)

32
+ 2

π

2H (3)

32

∫ 3

0
dqq2∆(q)t3′

k (q)

+ 2H (3′)
3′2 − 2H (3)

32
+ 2

π

(
2H (3′)

3′2 − 2H (3)

32

) ∫ 3

0
dqq2∆(q)t3′

k (q)

+ 2

π

∫ 3′

3

dqq2∆(q)

(
K (p, q) + 2H (3)

32

)
t3′
k (q). 36.
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The first two lines in Equation 36 are identical to the equation that determines
t3
k (p). If the effect of the remaining terms is small [up to terms ofO(Q/3)],
t3
k (p) = t3′

k (p) [again, up to terms ofO(Q/3)]. These terms are indeed small,
suppressed by a factor ofQ/3 compared with the leading terms. However, their
effect ont3

k (p) is not suppressed. That is because the operator acting ont3
k (p) on

the left-hand side of Equation 36 is nearly singular, that is, it has a small eigenvalue
of O(Q/3), so that∫ 3

0

(
δ(p − q) − 2

π
q2∆(q)K (p, q)

)
a(q) = O(Q/3)a(p). 37.

The eigenfunctiona(p) has the same asymptotics shown in Equation 34 as
t3
k (p). In our determination of the asymptotics, Equation 34, we have already
shown Equation 37 in the limit3 → ∞ and the total energyE → 0. We now see
that the operator on the left-hand side of Equation 36 is almost noninvertible and
that the projection oft3

k (p) in thea(p) direction is sensitive to theO(Q/3) terms
on the right-hand side of Equation 36. The amplitudes computed with different3s,
shown in Figure 6, indeed differ in the intermediate regime by a term of the form
sin(s0 ln p + δ). The solutiont3

k (p) has an increased sensitivity to the ultraviolet
physics and changes by a factor ofO(1) if the right-hand side of Equation 36
changes by a factor ofO(Q/3). That explains the apparent contradiction between
the cutoff sensitivity and the absence of ultraviolet divergences.

If we use the asymptotic form oft3
k (p), Equation 34, even in the regionp ∼ 3

where it is unjustified, and drop the terms suppressed by (Q/3)2, we can derive
an approximate analytical expression forH (3) needed to cancel theQ/3 terms
in Equation 36 [and to guaranteet3

k (p) is cutoff-independent up toO(Q/3)]:

H (3) = cos
(
s0 ln (3/3) + arctans0

)
cos

(
s0 ln (3/3) − arctans0

) , 38.

where3̄ is the parameter that determines the asymptotic phase, to be fixed by
experiment. We showH (3) in Figure 7. The points there were determined by
numerically finding values ofH (3) that, when inserted in Equation 29, reproduce
the same three-body phase shifts for different values of3. The solid line is Equation
38. The agreement between Equation 38 and the numerical points, as well as
the independence of the phase shifts with3 after H (3) is properly changed,
confirms our understanding of this somewhat unusual renormalization. For further
discussion of renormalization-group invariance at this order, see Reference (52).

The asymptotic running of the three-body coupling can be interpreted as a limit
cycle. The possibility of limit cycles in addition to fixed points was suggested in
Reference (53) but apparently never before seen in a simple physical system. Limit
cycles are now being further studied (54).

NLO calculations of phase shifts were performed in Reference (55) (scatter-
ing lengths were computed by different but equivalent methods in References 49
and 45). No new three-body force is needed at this order, althoughH (3) has
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Figure 7 Three-body force coefficientH (3) computed analyti-
cally (line) and numerically (points) as a function of log(3/

400 MeV).

a correction proportional to the two-body effective range. As in other channels, it
is convenient to compute higher-order corrections by computing the kernel at the
order desired and iterating it. That is, one numerically solves Equation 29 with a
kernel that includes higher-order effects. At NLO, we demandt3

k (p) to be inde-
pendent of3 up to terms ofO(Q/3)2. Due to the almost singular nature of the
integral equation, the right-hand side of Equation 36 must be3 independent up to
terms ofO(Q/3)3. This can be accomplished with the same no-derivative three-
body force because the terms ofO(Q/3)2 on the right-hand side of Equation 36
are k- and p-independent. [However,H (3) will have a different form than in
Equation 38]. Similarly, at N2LO we need to cancel theO(Q/3)3 terms on the
right-hand side. Those terms, however, are proportional tok2 and p2 and can be
absorbed only by a three-body force with two derivatives. So, at N2LO, a new
three-body force appears, and we need yet another piece of three-body data to fix
this new LEC.

The cutoff sensitivity is dramatically reduced by going to higher orders, as
expected (56). Figure 8 shows the phase shifts in theS-wave doublet channel
computed at the first three orders (56). As inputs in these calculations, besides
the two-body interactions, we have a no-derivative three-body force fitted to the
experimental binding energy of the triton at LO and a two-derivative three-body
force fitted to the experimental value of the doublet neutron-deuteron scattering
length at N2LO. The EFT results are compared to a phase-shift analysis (43)
and to results from the Argonne V18 potential plus the Urbana three-body force
adjusted to reproduce the correct triton binding energy ((57); A. Kievsky, private
communication).

The existence, even at LO, of a parameter not determined byNN scattering
means that models tuned to reproduce the low-energyNN phase shifts may differ
widely in their predictions for three-body properties. However, since up to NLO
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Figure 8 Neutron-deuteron phase shift (in degrees) in the doubletS-wave channel as
a function of the center-of-mass momentum: EFT at LO (dotted line), at NLO (dashed
line), and at N2LO (solid line); a phase-shift analysis (crosses); and a potential model
(points). (From Reference (56) with permission.)

there is only a one-parameter arbitrariness in the three-body predictions, there must
be correlations among these predictions. This has been noted empirically (58).
Figure 9 shows results for the doubletS-wave scattering length and the triton bind-
ing energy from a number of models, all of which reproduce the same low-energy
NNscattering (59). The predictions cover a wide range but show a clear correlation
(“Phillips line”). Also shown are the LO and NLO predictions for this correlation,
obtained by varying the value of the three-body force at fixed cutoff. An equivalent
explanation for the existence of the Phillips line was first offered in Reference (60).
Analogous results can be obtained in the EFT for the hypertriton (61).

In the 3N system, the pionless EFT seems to converge over a range of momenta
that is large enough to include the interesting physics associated with the bound
states. For example, if the three-body force is fitted to the scattering length, the
binding energy of triton isB3 = 8.08+ 0.23+ . . . = (8.31+ . . .) MeV (38, 56),
to be compared to the experimental resultBexp

3 = 8.48 MeV. The success of these
EFT calculations opens the way for the study of low-energy reactions involving
triton and3He.

3. EFFECTIVE FIELD THEORY WITH EXPLICIT PIONS

As the typical momentumQapproaches the pion massmπ , it becomes increasingly
difficult to account for pion exchange as a short-range effect. As we further increase
momenta pastQ ∼ mπ , we must include in the EFT an explicit pion field and
build up all its interactions allowed by symmetries. Because numerically the mass
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Figure 9 Correlation between the doubletS-wave nucleon-deuteron scattering length
and the triton binding energy (Phillips line): predictions of different models (points),
EFT at LO (light dashed line) and NLO (dark solid line), and experimental value
(cross).

difference between the1 isobar and the nucleon,δm = m1 − mN , is ∼2mπ ,
convergence of the pionful EFT is optimized by the concomitant inclusion of an
explicit1 degree of freedom. The1 can be included without additional problems,
since at these momenta the1 is, like the nucleon, a nonrelativistic object. All
other degrees of freedom can be considered heavy. Their effects are still subsumed
in contact interactions, as they were in the pionless EFT. What we are doing is
removing part of the pion (and possibly the isobar) contributions from the contact
interactions. One hopes the new EFT works for momenta up toMQCD ∼ 1 GeV,
the mass scale of the heavier particles.

Adding explicit pions to the theory will generate all sorts of nonanalytic con-
tributions to nuclear amplitudes. We want to devise a rationale for a controlled
expansion in the presence of pions.

3.1. Chiral Symmetry and Chiral Perturbation Theory

Fortunately, pion interactions are not arbitrary. Once explicit pion fields are con-
sidered, approximate chiral symmetry imposes important restrictions on the way
pions couple among themselves and to other degrees of freedom.

In the “chiral limit” where we neglect the massesmu andmd of the up and down
quarks, QCD has a chiralSU(2)L × SU(2)R symmetry. Because this symmetry is
not manifest in the QCD spectrum, it is reasonable to assume that it is broken spon-
taneously down to its diagonal subgroup, theSU(2)L+R of isospin. Goldstone’s
theorem (62) tells us that massless Goldstone bosons, naturally identified as pions,
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are associated with the three broken generators, and their fieldsπ live on the “chiral
circle” (actually a three-sphereS3) that represents the set of possible vacua. We call
the radius of this spherefπ ; it is directly related to the chiral-symmetry-breaking
scale,3χSB ∼ 4π fπ ∼ MQCD, but the precise factor can only be obtained from
the (so far elusive) mechanism of dynamical symmetry breaking in QCD. It turns
out that this radius can be determined from the pion lifetime; it is called the pion
decay constant,fπ ' 92.6 MeV.

To parameterize the chiral circle, it is convenient to choose fields for which
chiral symmetry is respected term-by-term in the effective Lagrangian. Because
the interactions of pions have to be invariant under chiral rotations, it is possible to
choose fields where an infinitesimal rotation is represented asπ → π + ε. Inter-
actions of these fields always involve derivatives on the sphere, that is, derivatives
along with certain nonlinear self-interactions.

As long as quark masses are small enough, they change this picture only slightly.
A common quark mass breaks chiral symmetry explicitly down to the diagonal
subgroup. Points on the chiral circle are no longer degenerate in energy, and a
particular minimum is selected, in a direction given by the quark mass terms
that we define as the fourth direction. The quark mass difference further breaks
isospin explicitly. In the low-energy EFT, the effect of quark mass terms can be
reproduced if we construct all terms that break chiral symmetry in the same way.
These interactions can involveπ without derivatives but are always accompanied
by powers ofmu + md or mu − md. One example is a pion mass term,m2

π ∝
(mu + md). Electromagnetic and weak interactions can be constructed as well.

The well-studied theory of nonlinear representations of symmetries (63) pro-
vides the tools to write down the appropriate interactions between pions and other
fields. The resulting chiral LagrangianL has an infinite number of terms that can
be grouped according to the index1:

L =
∞∑

1=0

L(1), 1 ≡ d + f/2 − 2, 39.

whered is the number of derivatives, powers ofmπ and/or powers ofδm, and f is
the number of fermion fields. Because of chiral symmetry, pion interactions that
stem from QCD bring derivatives and/or powers of the pion mass. As a conse-
quence,1 ≥ 0. The explicit form ofL(1) for the lower values of1 can be found
in the literature (18, 64).

As in the pionless EFT, the only hope of any predictive power rests on finding
some ordering of contributions to amplitudes. This can be done for processes where
all the external three-momenta areQ ∼ mπ . Powers ofQof any particular Feynman
diagram can be counted as for the superficial degree of divergence. Each space
derivative in an interaction produces a three-momentum in a vertex and therefore
counts asQ. A complication in the counting of energies stems from the presence
of heavy particles such as the nucleon along with light particles such as the pion.
In any loop, integration over the zeroth component of the four-momentum will
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involve two types of poles, according to the scales appearing in the propagators:
(a) standard poles at∼Q that correspond to external three-momenta and to the
mass of the pion, and (b) shallow poles at∼Q2/2mN that correspond to external
nucleon energies.

Processes that involve at most one heavy particle (A = 0, 1) are the simplest
because the contour of integration can always be closed so as to avoid shallow
poles. In this case, all energies are∼Q. As a consequence, each time derivative
counts asQ and four-momentum integration brings a factorQ4. A pion propagator
is Q−2 and a nucleon (or1) propagator isQ−1 from its static term; kinetic terms are
of relativeO(Q/mN) and thus can be treated as corrections. With these ingredients,
one can write the contribution of any diagram to the amplitude as

T ∝ QνF (Q/3), 40.

where3 is a renormalization scale,F is a calculable function of LECs, andν is a
counting index. For strong interactions (65),

ν = 4 − 2C − A + 2L +
∑

i

1i , 41.

whereC= 1 is the number of connected pieces,L is the number of loops, and the
sum runs over all vertices. In addition, electroweak interactions can be considered
through a simultaneous expansion inα = e2/4π and GFf 2

π . SinceL ≥ 0 and
1 ≥ 0, ν ≥ 2 − A ≡ νmin. Assuming that all LECs have “natural” size (given
by powers ofMQCD once the lower scales have been identified explicitly), an
expansion inQ/MQCD results. Its first two orders are equivalent to the current
algebra of the 1960s, but at higher orders unitarity corrections can be accounted
for systematically. In the sector ofA = 0, 1, the EFT is called chiral perturbation
theory (χPT).

In processes that involve more than one stable heavy particle (A ≥ 2), on the
other hand, a failure of perturbation theory can lead to bound states (6). The shallow
poles cannot be avoided: they represent “reducible” intermediate states that, as
in the pionless EFT, differ from initial states only by nucleon kinetic energies,
which are∼Q2/mN . This O(mN/Q) infrared enhancement over intermediate
states where energies are∼Q invalidates Equation 41 for reducible diagrams.
Fermion lines, loops, and derivatives then scale withQ as in Equation 16. A pion
propagator still counts asQ−2, but the pion can be taken in first approximation
as static, and it is sometimes referred to as a “potential” pion. Contributions that
come from standard poles naively scale as in processes with no more than one
heavy particle. Pions there are nonstatic or “radiative.”

The issue now is how to estimate the size of pion contributions. One needs
to find the importance of (a) pion exchange relative to short-range interactions,
and (b) multi-pion exchange relative to one-pion exchange (OPE). Both issues are
related, via renormalization, to the size of the contact interactions. How large are
they in the pionful EFT? What are the contributions that must be resummed in
nuclear amplitudes?
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3.2. The Two-Nucleon System

As we have discussed, theNNsystem is characterized by scattering lengthsas and
at that are much larger than 1/MQCD. In the pionless theory, this fine-tuning cannot
be explained, but it can be accommodated in the power counting by assigning to
the contact interactions the scaling given in Equation 16.

A new scale appears naturally in the pionful theory. The leading (1 = 0)
coupling of the pion to the nucleon is derivative with a coupling constantgA/ fπ ,
wheregA ' 1.26 is a parameter not fixed by symmetry but determined inβ-decay.
The OPE contribution to theNNamplitude is, schematically,g2

AQ2/ f 2
π (Q2 +m2

π ).
Because a reducible intermediate state contributesmNQ/4π , relative to OPE, once-
iterated OPE can be estimated to give a contribution[

g2
AQ2/ f 2

π

(
Q2 + m2

π

)]2
(mN Q/4π )

g2
AQ2/ f 2

π

(
Q2 + m2

π

) ∼ Q

MNN
42.

(as long asQ&mπ ). Here we introduced the scale

MNN ≡ 4π f 2
π

g2
AmN

, 43.

which sets the relative strength of multi-pion exchange. Numerically (forNc = 3),
mN ∼ 4π fπ andgA ∼ 1, soMNN ∼ fπ . This naive dimensional analysis cannot,
however, capture the numerical factors that actually set the relative size of pion
contributions. A more accurate estimate requires concrete calculations.

3.2.1. PERTURBATIVE PIONS For Q.MNN, iteration of OPE should be suppressed
with respect to OPE according to Equation 42. Moreover, if we assume that the
leading short-range effects are∼4πa/mN (as in Equation 16 withQ → 1/a), then
OPE is suppressed byO(1/aMNN) compared with the leading contact interaction.
With such estimates, ifMNN is sufficiently large (compared with 1/a and mπ )
andQ sufficiently small, pions may be treated perturbatively. Lutz ((66); private
communication) and Kaplan, Savage & Wise (23) suggested that this could be
profitable.

A simple power counting, known as KSW counting, follows from takingQ ∼
1/a ∼ mπ < MNN and counting powers of the light scaleQ. This is a direct
extension of the power counting in Equation 16. In particular, the scaling of the
contact operators is assumed to be the same as before with3 → MNN, and thus
their ordering is unchanged. Because of chiral symmetry, each insertion of a pion
exchange brings a factor ofQ/MNN. Electroweak interactions can be treated in
much the same way as before. One can show that renormalization can be carried
out consistently within this power counting (23).

However, for this power counting to be relevant to nuclear physics,MNN has to
be sufficiently large. IfMNN is not larger thanmπ , the domain of perturbative pions
is no larger than that of the simpler pionless theory. The issue of the range of validity
of the EFT with perturbative pions can only be settled by explicit calculation of
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dimensionless factors and comparison with precise observed quantities, this being
done to sufficiently high order so that a significant number of pion effects can be
tested.

With this power counting, the LONN amplitude coincides with that in the
pionless EFT (see Figure 1). At this order, there are contributions only in the two
S-wave channels from chirally symmetric, nonderivative contact interactions (the
C0 terms). Subleading terms, of relative order (Q/MNN), are constructed in a direct
extension of subleading terms of the pionless EFT. Besides two two-derivative
contact interactions (C2 terms), we also insert OPE and two nonderivative contact
interactions that break chiral symmetry explicitly (m2

πCqm
2 terms). BothC2 andCqm

2
contact interactions only contribute toS waves. The tensor operator from OPE,
on the other hand, introduces mixing between3S1 and3D1 waves. To this order,
all but theS-wave phases are predicted in terms of pion parameters. A calculation
of theNNsystem to NLO has been done (23, 67). Comparison with the Nijmegen
phase-shift analysis (26) suggests thatMNN ' 300 MeV (23). The relative size of
OPE and contact interactions was extensively discussed (68–70), but the issue is
clouded by the details of fitting procedures.

At N2LO, we encounter new pion exchanges: both nonstatic (or radiative) OPE
and once-iterated OPE. A calculation at this order was carried out in allS, P, andD
waves (71, 72). In singlet channels, such as1S0, there seems to be good agreement
with the Nijmegen phase-shift analysis, but in triplet channels, such as3S1, 3D1,
and3P0,2, the N2LO corrections are big at momenta∼100 MeV and lead to large
disagreement (Figure 10 shows one example). The effects of perturbative pions
(and of1 isobars) are milder in the higher partial waves (73).

The problem can be traced to the iteration of the tensor part of OPE. These
results suggest that pions, or, more explicitly, the Yukawa part of potential and
radiation pions, when treated perturbatively, give rise to a converging expansion
for the 1S0 scattering amplitude up to fairly large momenta. However, OPE in
the 3S1 − 3D1 coupled channels is not perturbatively convergent for momenta
around 100 MeV, because the tensor force, which survives in the chiral limit, is
too large. This, in turn, suggests that the naive estimateMNN ∼ fπ is not entirely
unreasonable.

3.2.2. RENORMALIZATION OF THE PION LADDER AND POWER COUNTING If indeed
MNN ¿ MQCD, we might hope to improve on the expansion of the previous section
by a controlled resummation of terms that go asQ/MNN. If MNN ∼ 100 MeV, the
lack of other known particle thresholds there suggests that the resummation could
involve pions exclusively. Indeed, Weinberg, who first attempted the use of EFT
in the derivation of nuclear forces (6), had already suggested a power counting in
which pions appear in LO, and should therefore be iterated. [Some elements of
this power counting had been anticipated by Friar (74).]

Weinberg’s original proposal (6) for an EFT describing multinucleon systems
was to split the full amplitudes into reducible and irreducible parts. Irreducible
diagrams, in which typical energies superficially resemble those in ordinaryχPT,
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Figure 10 3S1 NN phase shift in the EFT with perturbative pions, as a function of
the center-of-mass momentum. The long-dashed, short-dashed, and dotted lines are,
respectively, the EFT results at LO, NLO, and N2LO. The dash-dotted line is the N2LO
result with a higher-order contact interaction added. The solid line is the Nijmegen
phase-shift analysis. (From Reference (72), courtesy of T. Mehen.)

should satisfy the power counting, Equation 41. We call the sum of irreducible
diagrams the potentialV . Note that the potential, being a set of subgraphs, can
be defined in alternative ways. All definitions that exclude the infrared-enhanced
contributions but differ by a smaller amount are equally good, provided they avoid
double counting and omissions. A field redefinition might change the potential
but not the full amplitude. The important point is that the only scale that appears
explicitly in the potential isQ, so that the power counting proceeds as in the case
of diagrams with at most one heavy particle. Reducible diagrams can be obtained
by sewing together irreducible diagrams via intermediate states that contain the
propagation of only the initial particles. The full amplitudeT for an A-nucleon
system is thus a sum of the potential and its iterations; schematically,

T = V + VG0V + VG0VG0V + . . . = V + VG0T, 44.

whereG0 is theA-nucleon free (Schr¨odinger) Green’s function. This is simply the
Lippmann-Schwinger equation, which is formally equivalent to the Schr¨odinger
equation with the potentialV , from which wave functions|ψ〉 can be constructed.
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Unfortunately, counting powers ofQ is not in itself sufficient for an ordering of
interactions. We need to find which other scales accompanyQ. Given that we lack
a full solution of QCD, we must make some assumptions about the LECs. Because
OPE has short-range components, it is natural to assume that they set the scale for
the short-range interactions. In this case, since OPE isO(g2

A/ f 2
π ) for Q ∼ mπ , we

expect the leadingNN contact interactions to beO(4π/mNMNN). This hypothesis
explains why nuclear bound states are much shallower than naively expected (6, 9).
The series in Equation 44 is roughly

T ∼ 4π

mNMNN

[
1 + O

(
Q

MNN

)
+ . . .

]
, 45.

which requires resummation and exhibits a (real or virtual) bound state at
Q ∼ MNN. In other words, the natural scales for theNN scattering length and
for the binding energy of a nucleus are

|a| ∼ 1

MNN
, B ∼ M2

NN

mN
∼

(
4π f 2

π

)2

g4
Am3

N

, 46.

respectively. We find that it is notMQCD by itself that sets the scale for binding
energies, but a certain ratio of powers offπ andmN. If we estimatemN ∼ 4π fπ
andgA ∼ 1, thenB ∼ fπ/4π ∼ 10 MeV. It remains mysterious why theNN (real
and virtual) bound states are even shallower, or equivalently, why|a| is a few times
the natural scale of 1/MNN. This still has to be accommodated by fine-tuning the
contact interactions.

Because LECs serve as counterterms to pion loops in the potential, which are
expected to be suppressed (as inχPT) by powers ofQ/4π fπ , Weinberg implicitly
assumed that LECs related to more derivatives and powers of the pion mass contain
inverse powers ofMQCD. That is, a (renormalized) contact operator with index1

would scale as

C1 ∼ 4π

mNMNNM1
QCD

, 47.

as in naive dimensional analysis.
Accepting this assumption and disregarding the fine-tuning, a simple power

counting results from takingQ ∼ MNN ∼ 1/a ∼ mπ . The potential obeys Equations
40 and 41. The leading potential consists of no-derivative, chirally symmetric
contact interactions plus static OPE,

V (0) = C(S)
0 + C(T)

0 Eσ1 · Eσ2 −
(

gA

fπ

)2

t1 · t2
Eσ1 · EqEσ2 · Eq
Eq2 + m2

π

, 48.

whereEσi (2t i ) are the Pauli matrices in spin (isospin) space andEq is the momentum
transferred. All contributions to nuclear forces other than Equation 48 would come
as corrections in powers ofQ/MQCD, starting at (Q/MQCD)2. The structure of the
potential rapidly becomes more complex with increasing order (7). The leading
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potential has to be resummed, whereas corrections can be treated in perturbation
theory. If the corrections are truly small, resumming them should cause no ma-
jor loss of control. This method requires numerical solution of the Schr¨odinger
equation and is similar in spirit to the traditional potential-model approach. As we
demonstrate below, Weinberg’s power counting has been extensively and success-
fully developed during the past decade to study processes that involve few-nucleon
systems.

However, there is a subtlety not present inχPT. Loops in reducible diagrams
probe high energies (when nucleons are far off-shell). As in the pionless EFT,
the potential does not vanish at large momenta; it is singular. In addition to theδ

function and its derivatives already present in the pionless theory, pion exchange
generates potentials that behave as 1/r n with n ≥ 3, as the radial coordinater → 0.
The large-momentum or short-distance behavior is the same as in the chiral limit
m2

π → 0. Even at LO, the tensor force goes as 1/r 3 in the chiral limit. As a con-
sequence of ultraviolet divergences generated by the iteration of the potential, the
infrared enhancement ofMQCD/MNN might contaminate LECs, possibly invalidat-
ing Equation 47.

The crucial issue is whether, at any given order, all divergences generated by
iteration can be absorbed in the parameters of the potential truncated at that order.
There is some indication that equally good fits can be achieved in leading orders
with various cutoffs (9, 70, 75–78), as required of a sensible EFT, but the numerical
nature of the results makes a definite answer difficult.

Unfortunately, there seem to be formal inconsistencies in Weinberg’s count-
ing (23, 69). Divergences that arise in the iteration of LO interactions apparently
cannot be absorbed by the LO operators themselves. Two examples are two-loop
diagrams where (a) OPE happens between two contact interactions, with a di-
vergence proportional to the square of the pion mass (23), or (b) OPE is iterated
three times, with a divergence proportional to the square of the momentum (69).
Although these two particular cases could be resolved by promoting two counter-
terms to LO, it is likely that a similar problem would show up at higher orders in the
expansion. The correspondence between divergences and counterterms appears to
be lost, a fundamental problem with both the chiral expansion and the momentum
expansion that results from Weinberg power counting.

This argument is not decisive, though. In the context of the Schr¨odinger equa-
tion, perturbative arguments are not in general reliable for singular potentials (79).
The perturbative expansion might have a cut starting atg2

A/ f 2
π = 0; a g2

A/ f 2
π

expansion would then entail correlated contributions to counterterms at different
orders, each bringing powers ofMQCD/MNN yet resulting in a much better behaved
sum. How can the resummation be consistent? There is a mapping between the
singular two-body 1/r 2 central potential and the three-body problem with short-
range interactions. In Section 2.2.2, we saw that for the latter, the renormalization
of the nonperturbative equation is very different from the renormalization of indi-
vidual terms in the associated perturbative series (21). In particular, the relevant
counterterm exhibits a limit-cycle behavior.
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Figure 11 Zero-energy radial wave functions of the 1/r 4 potential: exact (solid line)
and perturbation theory to LO (short dashes), NLO (medium dashes), and N2LO (long
dashes). (From Reference (80) with permission.)

It turns out that the correct renormalization of singular potentials is intrinsi-
cally nonperturbative (79, 80). Both solutions of the Schr¨odinger equation for an
attractive 1/r n central potential, in contrast to regular potentials, are equally ac-
ceptable: the radial wave functionu(r ), whose large-distance behavior determines
low-energy observables, oscillates rapidly asr decreases. Perturbative approxi-
mations to the wave function fail at distances comparable to the intrinsic scaler0

present in the potential, as illustrated in Figure 11. A single counterterm associ-
ated with the short-distance physics can render the problem cutoff-independent.
For example, short-distance physics can be represented by a square-well potential
of radiusR ¿ r0, whose depth,V0 = V0(R), can be adjusted so that physics at
r & r0 is independent ofR (80). [The advantage of this coordinate-space regulator
is that one can do an analytic matching of the outer and inner solutions of the
Schrödinger equation, thus finding the desiredV0(R). For another technique to
deal with a singular potential, see e.g. Reference (81).] Whereas for a repulsive
potential there exist only fixed points (82), the situation in the attractive case is
similar to the three-body system.

These results were extended to theNN potential in the1S0 and 3S1 − 3D1

channels (83); the long-range part of the potential was taken as OPE forr > R.
The asymptotic behavior is that of the chiral limit, where the relevant scale is
r0 ∼ 1/MNN. The depths of the short-range part of the potential can be different
in the singlet and triplet channels, as there are two parameters [C(S)

0 andC(T)
0 ] in

Equation 48.
In the 1S0 channel, the calculation is straightforward. The pion potential is

simply a Yukawa form, and the explicit solution is

V0(R; n) = −(2n + 1)2
π2

4mNR2
− g2

Am2
π

8π f 2
π R

log

(
R

R∗

)
+ O(R0), 49.
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Figure 12 Running ofmNV0 as a function of the cutoffR. Singlet channel (left panel):
The solid line shows Equation 49 forn = 1; the dotted line omits theR−1 part. Triplet
channel (right panel): numerical solution of an analytic matching equation (solid lines).
Points are extracted directly from a numerical solution of the Schr¨odinger equation in
the respective channel. (From Reference (83) with permission from Elsevier Science.)

whereR∗ is an intrinsic length scale to be determined numerically from a fit to low-
energy data, andn labels the branch of a cotangent. In the left panel of Figure 12,
theR-dependence ofV0, as given by Equation 49, is compared to the numerical
solution of the Schr¨odinger equation with the observed singlet scattering length.
The presence of a multibranch structure is related to the accumulation of bound
states inside the square well. The presence of unphysical bound states is innocuous
if the binding energies of such states are near the cutoff of the EFT.

The formal problem with the chiral expansion in Weinberg’s counting survives
the resummation. Although the first cutoff-dependent term in Equation 49 can be
represented by a chiral-symmetric contact interaction, the second would require
a chiral-breaking one. In momentum-space notation, where the cutoff is denoted
by 3,

C0(3) + m2
πC(qm)

2 (3) = 4π

6mN3

[
(2n + 1)2

π2

2
+ m2

π

MNN3
log

(
3∗
3

)]
. 50.

Although the logarithmic divergence is suppressed by a power of3 compared
with the first term, it is a true divergence in physical quantities that must be renor-
malized at LO in Weinberg power counting. TheC(qm)

2 operator, which is formally
subleading, must be promoted to LO if the full OPE is iterated, in agreement
with the perturbative argument of Reference (23). On the other hand, theC(qm)

2
contribution is numerically small (see dotted curve in the left panel of Figure 12,
which neglects the3−2 corrections to the running). This smallness explains why
Weinberg’s power counting has been found to work well in this channel over a
moderate range of cutoffs (9, 70, 75–78).

A possible conclusion is that OPE and theO(mq) LECs contribute to any
amplitude at the same order in the expansion, and this is what leads to KSW power
counting. However, a more general conclusion is that the difference between the
OPE contribution formq 6= 0 and the OPE contribution in the chiral limit must
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occur at the same order as theO(mq) counterterms. In many cases these two
conclusions yield identical amplitudes, but not in the3S1 − 3D1 channel.

In the3S1 − 3D1 channel, in addition to the long-distance Yukawa interaction
and the contact interaction, there is a strong tensor component of OPE that couples
S andD waves. At distancesr ¿ 1/mπ , the central potential is negligible, and
in the regionR < r ¿ 1/MNN, we can neglect the angular-momentum barrier.
Moreover, for

√
mNE ¿ MNN, the total energyE can be treated as a perturbation.

In this short-distance limit, we can keep only the chiral limit of the tensor force, and
the Schr¨odinger equation can be diagonalized and solved exactly. In the diagonal
basis, the Schr¨odinger equation decouples into an attractive singular potential and
a repulsive potential. The solution for the attractive singular potential is a linear
combination of Bessel functions (80, 84), and the wave function at this order is

u(r ) = Ar3/4 cos

(√
6

MNNr
+ φ0

)
, 51.

whereA is a dimensionful normalization constant andφ0 is the asymptotic phase,
which determines the triplet scattering length. This solution oscillates ever faster
as it approaches the origin, just as in Figure 11. As before, the issue is whether
a V0(R) can be found such that the asymptotic phaseφ0 becomesR-independent.
Matching logarithmic derivatives of the interior square-well and exterior attractive
solutions atr = R yields an equation whose solution is shown in the right panel
of Figure 12. The renormalization-group flow is multi-branched and nonanalytic
in g2

A/ f 2
π .

The LO phase shifts are indeed found to be cutoff independent (83), in agreement
with the numerical analyses of References (84) and (77). As an example, the3S1

phase shift is shown in Figure 13. In these channels, the perturbative argument
(69) is misleading; Weinberg’s power counting does not seem to be formally
inconsistent.

It was conjectured (83) that a formally consistent expansion in the pionful EFT
is an expansion around the chiral limit. This expansion is equivalent to KSW
power counting in the1S0 channel and equivalent to Weinberg power counting
in the 3S1 − 3D1 coupled channels, i.e., it selects only the desirable features of
both power countings. The LO potentialV(r ; 0), to be treated exactly, consists of
the chirally symmetric component of OPE and nonderivative contact interactions.
Deviations from the chiral limitV(r ; mπ )−V(r ; 0) can be treated perturbatively in
all channels, and in fact, such a perturbative expansion is required in the1S0 channel
but not in the3S1 − 3D1 channel. Evidence was presented that this expansion
converges, albeit slowly. The slowness is due not to the long-range pion physics
itself, but to the fine-tuned short-distance physics [as argued previously (85)].

Although existing obstacles to a derivative and pion-mass expansion were re-
moved, higher orders must be studied before the issue can be considered settled.
For example (86), an incomplete subleading calculation with nonperturbative pi-
ons has found limits in fitting the effective range. Note also that alternative views
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Figure 13 3S1 NN phase shift in LO in the EFT with nonperturbative pions, as a
function of the center-of-mass momentum. The long-dashed, medium-dashed, and
short-dashed lines have, respectively, R= 0.45 fm (3 = 438 MeV), R= 0.21 fm
(3 = 938 MeV), and R= 0.10 fm (3 = 1970 MeV). The solid line is the Nijmegen
phase-shift analysis. (From Reference (83) with permission from Elsevier Science.)

of the renormalization of the pion ladder exist (87). Finally, there is an interest-
ing suggestion of expanding theNN amplitude in the energy region where the
S-wave phase shifts vanish (88). The connection between this expansion and the
low-energy expansion described here has not been fully analyzed.

3.2.3. POTENTIALS AND FITS TO NN DATA Conceptually and numerically, the pic-
ture that emerges from the previous section is close to Weinberg’s original proposal.
To be formally consistent, we should expand the potential in powers of the pion
mass. If we resum the effects of the pion mass in pion exchange, which can be done
with higher-order error, then the LO potential becomes the same as in Weinberg’s
power counting. Corrections to the LO potential need not be iterated to all orders.
Yet, as has been shown explicitly in the pionless EFT (14), they can be iterated
with small error if one uses a regularization with a cutoff3 ∼ MQCD. Clearly, a
potential that is correct up to a certain order ensures that the amplitude is correct
to the same order.

Much work has been done in developing an EFT potential based on Weinberg’s
power counting. Traditionally, potential models have been plagued by problems
of principle, such as the form of meson-nucleon interactions (e.g., pseudoscalar
versus pseudovector pion coupling), renormalization issues, absence of a small
expansion parameter, etc. Because the EFT potential explicitly includes only the
exchange of pions, all these problems can be resolved. For any given choice of
pion field, the form of interactions is fixed by the pattern of chiral symmetry
breaking. Renormalization can be performed because all interactions consistent
with symmetries are included. And the power counting (Equation 41) for the EFT
potential implies that diagrams with an increasing number of loopsL—and, in
particular, with an increasing number of exchanged pions—should be progressively
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less important. The EFT potential can be considered, in an average sense, a low-
energy approximation to standard potential models.

In LO, ν = νmin = 0, theNN potential consists of simply static OPE and
momentum-independent contact terms. This is obviously a very crude approxima-
tion to theNNpotential; it is known that the nuclear force has other sizable compo-
nents, such as a spin-orbit force, a strong short-range repulsion, and an intermediate
range attraction. These are all generated in the next orders:ν = νmin + 1 correc-
tions vanish owing to parity and time-reversal invariance, but severalν = νmin +2
corrections remain. First, there are short-range corrections; they come from one-
loop pion dressing of the lowest-order contact interactions and from 4N contact
interactions with two derivatives or two powers of the pion mass. It is easy to show
that the result of loop diagrams amounts to a simple shift of the contact parameters.
Second, there are corrections to OPE; these come from vertex dressing and from
recoil upon pion emission. Third, there are two-pion exchange (TPE) diagrams
built out of the lowest-orderπNN (andπN1) interaction. Atν = νmin + 3, a few
more TPE diagrams appear, which involve theππNN seagull vertices from the
1 = 1 Lagrangian. To this order, there are also some small relativistic corrections.
At ν = νmin+4, a host of two-loop diagrams and new contact interactions emerge,
and so on. Some diagrams are shown in Figure 14.

A calculation of all contributions to theNN potential up toν = νmin + 3
was carried out (7, 9) using time-ordered perturbation theory. This EFT potential
is energy-dependent, but equivalent potentials can be obtained through unitary
transformations. An energy-independent potential is more convenient in many
situations; the corresponding version has been derived (89).

The potential to this order has all the spin-isospin structure of phenomenolog-
ical models, but its profile is determined by explicit degrees of freedom, symme-
tries, and power counting. The power counting suggests a hierarchy of short-range
effects:Swaves should depend strongly on the short-range parametersC(S,T)

0 ; con-
tact interactions affectP-wave phase shifts only in subleading order, so their effect
should be smaller and approximately linear; andD and higher waves are directly
affected by contact interactions at higher orders, being thus essentially determined
by pion exchange. Whereas phenomenological potentials such as that in Reference
(90) have similar short- and long-range structure, it is on TPE that chiral symmetry
is particular influential. The chiral TPE, first derived in Reference (7) in the limit
of a heavy1, was studied in detail (73). More recently, the chiral TPE potential
was substituted for one-boson exchange in a Nijmegen phase-shift reanalysis of
proton-proton data below 350 MeV (91), and a drop inχ2 was observed. A new
full Nijmegen phase-shift analysis is in the works, in which chiral TPE is used in
the long-range potential (91).

Fits toNNphase shifts were done to this order with (9) and without (78) explicit
1 degrees of freedom. Although OPE and TPE diagrams are completely deter-
mined by LECs accessible inπN reactions, most of these LECs were not known
at the time of Reference (9) and were also searched in the fit. Epelbaum et al. (78)
took these parameters from a fit toπN scattering, which allowed for a simpler,
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Figure 14 Some time-ordered diagrams that contribute to theNN potential in the
pionful EFT. Solid lines represent nucleons; double lines,1; dashed lines, pions; dot,
an interaction inL(0); dot within circle, an interaction inL(1); dot within two circles,
an interaction inL(2). The first line corresponds toν = νmin, the second and third lines
to ν = νmin + 2, the fourth line toν = νmin + 3, and “. . .” denotesν ≥ νmin + 4. All
orderings with at least one pion (or1) in intermediate states are included. Not shown
are diagrams that contribute only to renormalization of parameters.

partial-wave-by-partial-wave fit ofNNphase shifts. They found reasonable agree-
ment with existing phase-shift analyses and deuteron properties. As an example,
the 3S1 phase shift at various orders is shown in Figure 15 and compared to the
Nijmegen phase-shift analysis (26) (see Figures 2, 10, and 13). The contributions
from the short-range parameters in this fit turn out to be similar to those from
heavier resonances in phenomenological models (92).

Although the fits toν = νmin + 3 are good, they are inferior to the so-called
realistic potentials that use 40–50 parameters to fit data up to 300 MeV with a
χ2/d.o.f. near 1. First steps are being made to extend the EFT potential toν =
νmin + 4 (93–95). The results are promising, achieving quality comparable to
realistic potentials. [Indeed, the difference among realistic potentials arises from



8 Oct 2002 9:36 AR AR172-NS52-09.tex AR172-NS52-09.SGM LaTeX2e(2002/01/18)P1: GJB

378 BEDAQUE ¥ VAN KOLCK

Figure 15 3S1 NN phase shift (in degrees) in the EFT with Weinberg counting, as a
function of the lab energy (in GeV). The dotted, dashed, and solid lines are the results
at ordersν = νmin, ν = νmin + 2, andν = νmin + 3, respectively. The squares are the
Nijmegen phase-shift analysis. (From Reference (78), courtesy of U.-G. Meißner.)

high-momentum intermediate states probing scales that cannot be uniquely fixed
by low-energy fits (96).]

3.2.4. ISOSPIN VIOLATION The mass difference betweenu and d quarks breaks
isospin symmetry explicitly. The meson masses indicate that the ratioε ≡ (mu −
md)/(mu + md) ∼ 1/3. Naively, this suggests that isospin might not be a much
better symmetry than the rest of the chiral group. On the other hand, a cursory look
at hadron masses and a more complete analysis of dynamical amplitudes show that
isospin is typically broken only at the few-percent level.

Why is isospin such a good symmetry at low energies? The answer can be found
in the pattern of chiral-symmetry breaking incorporated in the chiral Lagrangian
(11). Explicit chiral-symmetry-breaking effects are present already at index1 = 0
through the pion mass term, but operators generated by the quark mass difference
appear only at1 = 1 through a term that contributes to the nucleon mass splitting
and—because of chiral symmetry—to certain pion-nucleon interactions. As a con-
sequence, in most quantities, isospin breaking competes with isospin-conserving
operators of lower order, and its relative size is notε but ε(Q/MQCD)n, where
n is a positive integer. In other words, isospin is an accidental symmetry (11):
a symmetry of the lowest-order EFT that is not a symmetry of the underlying
theory. The only known exception to this rule is in the isoscalart channel inπN
scattering at threshold, where there is no contribution from the1 = 0 Lagrangian,
and both the isospin-conserving and -violating amplitudes start at the same order.
The isospin-violating piece comes from the pion-nucleon interactions linked to
the nucleon mass splitting. Unfortunately, this is hard to see experimentally.



8 Oct 2002 9:36 AR AR172-NS52-09.tex AR172-NS52-09.SGM LaTeX2e(2002/01/18)P1: GJB

EFFECTIVE FIELD THEORY 379

Along these lines, one can study the expected size of isospin breaking in the
nuclear potential. We follow the standard nomenclature, in which an isospin-
symmetric potential is “class I,” a potential that breaks charge independence but
not charge symmetry—defined as a rotation ofπ around the 2-axis in isospin
space—is “class II,” a potential that breaks charge symmetry but vanishes in the
np system is “class III,” and a potential that breaks charge symmetry but causes
mixing in thenpsystem is “class IV.”

At Q ∼ MNN, photon exchanges are perturbative. These standard electromag-
netic effects from “soft” photons can be obtained straightforwardly from gauge-
invariant operators that involve the photon field. In addition, isospin violation arises
from the quark masses, from indirect electromagnetic effects, and from simulta-
neous pion-photon exchange. In order to compare the various sources of isospin
breaking, we note that the size of electromagnetic effects in loops is typically
∼α/π which, numerically, is∼ε(Q/MQCD)3.

The leading isospin-breaking interactions in Weinberg’s power counting have
been derived (11). (The necessary modification of Weinberg’s counting discussed
in Section 3.2.2 shows that chiral-symmetry-breaking terms are even more sup-
pressed than chiral-symmetric ones. This modification is not expected to affect the
relative sizes among isospin-breaking interactions.) No isospin-violating effects
appear at LO,ν = νmin, so the leading potential is class I. The first isospin-breaking
effect (in addition to Coulomb exchange) appears atν = νmin + 1 in the form of a
class II isospin violation from the pion mass splitting [1m2

π = O(αM2
QCD/π )] in

OPE. One order down,ν = νmin + 2, a class III force appears mainly from the quark
mass difference through breaking in theπNN coupling [β1 = O(εm2

π/M2
QCD)] in

OPE, from contact terms [γs,σ = O(εm2
π/M4

QCD)], and from the nucleon mass
difference [1mN = O(εm2

π/MQCD)]. To this order, the isospin-violating nuclear
potential is anNN potential of the form

Vib = VII [(t1)3(t2)3 − t1 · t2] + VIII [(t1)3 + (t2)3] , 52.

where

VII = −
(

gA

fπ

)2 Eq · Eσ1Eq · Eσ2(Eq2 + m2
π0

)(Eq2 + m2
π±

)(
1m2

π + 1m2
N

)
, 53.

VIII = gAβ1

2 f 2
π

Eq · Eσ1Eq · Eσ2

Eq2 + m2
π

− (
γs + γσ Eσ1 · Eσ2

)
. 54.

Finally, class IV forces appear only at orderν = νmin + 3.
We conclude that the pattern of symmetry breaking in QCD naturally suggests

a hierarchy of classes in the nuclear potential (11):

〈VM+I〉
〈VM〉 ∼ O

(
Q

MQCD

)
, 55.

where〈VM〉 denotes the average contribution of the leading class-M potential.
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This qualitatively explains not only why isospin is a good approximate symmetry
at low energies, but also why charge symmetry is an even better symmetry. It gives,
for example, the observed isospin structure of the Coulomb-corrected scattering
lengths (97),anp ' 4 × [(ann + app)/2 − anp] ' 42 × (app − ann).

One can use the above formalism to do consistent and systematic calculations
of isospin violation. For example, the isospin-violating potential of ranges∼1/mπ

and∼1/2mπ up toν = νmin + 3 were computed (98–100). In contrast to previous
attempts that lacked an EFT framework, the EFT results are invariant under both
gauge transformations and pion-field redefinitions and have simple forms. The
component of range∼1/mπ comes from diagrams with all possible one-photon
dressings of OPE, plus the relevant counterterms (98). Its isospin structure allows
only charged-pion exchange and therefore is class II. Thisπγ potential has been
incorporated in a Nijmegen phase shift reanalysis ofnpdata below 350 MeV (98).
We can use the values for theπNNcoupling constants determined by the analysis
to find that their isospin breaking (β1) is consistent with zero, with an uncertainty
comparable to our expectation from dimensional analysis and fromπ−η−η′ mix-
ing (101). Similarly, the two contact interactions (γs,t ) might be viewed as originat-
ing in ρ−ω mixing and pseudovector-meson exchange (in particular close-lying
doublets such asa1– f1) (101, 102). The components of range∼1/2mπ come from
two sources. One is the pion mass difference (1m2

π ) in TPE that generates a class
II potential (99); the other is aππNN seagull that arises as a chiral partner of
the nucleon mass difference (1mN) and produces a class III TPE potential (100).
All these effects are relatively small, with estimated contributions to the scattering
lengths of approximately± 0.5 fm.

Walzl et al. (103) carried out a fit toNN phase shifts that included various
of the above isospin-breaking interactions, improving on an earlier analysis with
perturbative pions (104). Isospin breaking in the scattering lengths can be accom-
modated, and higher energies and partial waves can be predicted. A next-order
calculation should achieve the level of precision of modern phenomenological
potentials.

3.3. Three- and Four-Nucleon Systems

Few-body systems raise the issue of few-body forces allowed by symmetries,
which will at some level contribute to observables. One of the advantages of an
EFT framework is the possibility of deriving consistent few-body forces, free of
off-shell ambiguities. In the standard nuclear physics approach, few-nucleon forces
are either inspired by arguments that are independent of the assumptions invoked
in theNN potential, or are simply guessed at on phenomenological terms.

The pionful EFT offers some insight into few-nucleon forces. In addition to
contact interactions as in the pionless theory, it has further pion-exchange compo-
nents. The potential, defined as a sub-amplitude, includes (forA > 2) diagrams
that haveC ≥ 1 separately connected pieces. Ann-nucleon force is a contribution
to the potential that connectsn nucleons.
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Weinberg’s power counting, embodied in Equation 41, suggests a hierarchy of
few-nucleon forces. As in theNN case, this power counting relies on an implicit
assumption about the scale in contact interactions. We saw in Section 2.2.2 that,
in the pionless EFT, the running of the renormalization group toward low energies
enhances the size of three-body forces. The latter get contaminated by the fine-
tuning present in the two-body sector. Whether the same happens at the higher
energies relevant to the pionful theory is not clear. A portion of the 3N forces in the
pionless theory matches onto diagrams of the pionful theory that are the iteration
of the NN potential throughNN intermediate states where at least one nucleon
has momentumO(mπ ). It is conceivable that the enhancement is removed from
contact interactions once the EFT is extended to momenta ofO(mπ ).

The new forces that appear in systems with more than two nucleons have been
derived (7, 8, 10). The dominant potential, atν = 6−3A = νmin, is simply theNN
potential of lowest order, which we encountered in Section 3.2.3. We can easily
verify that, if the1 is kept as an explicit degree of freedom, a 3N potential will
arise atν = νmin + 2, a 4N potential atν = νmin + 4, and so on. Approximate
chiral symmetry implies thatn-nucleon forcesVnN obey a hierarchy of the type

〈V(n+1)N〉
〈VnN〉 ∼ O

(
Q

MQCD

)2

, 56.

with 〈VnN〉 denoting the contribution pern-plet. (This hierarchy is a nontrivial
consequence of chiral symmetry; some nonchiral models produce large three-body
forces.) As discussed in Section 3.2.2, we expect|〈V2N〉| ∼ 10 MeV. Usingmπ

andmρ for Q andMQCD, respectively, the suppression factor is∼0.05, give or take
a factor of two or three. These estimates are in accord with detailed few-nucleon
phenomenology based on potentials that include small 3N and no 4N forces. This
is shown in Table 1 in the case of the AV18/IL2 potential (105).

It proves instructive to look at the form of the first few terms in the few-nucleon
potential. Atν = νmin + 2, in addition to corrections to theNN potential, one
also finds diagrams that involve either three nucleons or two pairs of nucleons

TABLE 1 Contributions of the two-, three- and four-nucleon potentials (per doublet,
per triplet, and per quadruplet, respectively): Weinberg power counting (W pc) and
calculations (105) with the AV18/IL2 potential for the ground states of various light
nuclei (2H, 3H, etc.)

(MeV) W pc 2H 3H 4He 6He 7Li 8Be 9Be 10B

|〈V2N〉| ∼10 22 20 23 13 11 11 9.4 8.9

|〈V3N〉| ∼0.5 — 1.5 2.1 0.55 0.43 0.38 0.29 0.30

|〈V4N〉| ∼0.02 — — ? ? ? ? ? ?
|〈V3N 〉|
|〈V2N 〉| ∼0.05 — 0.075 0.091 0.042 0.039 0.035 0.031 0.034
|〈V4N 〉|
|〈V3N 〉| ∼0.05 — — ? ? ? ? ? ?
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Figure 16 Some time-ordered diagrams that contribute to the three-nucleon potential
in the pionful EFT. Solid lines represent nucleons; double lines,1; dashed lines, pions;
heavy dot, an interaction inL(0); dot within a circle, an interaction inL(1). The first
line corresponds toν = νmin + 2, the second line toν = νmin + 3, and “. . .” denotes
ν ≥ νmin + 4. All nucleon permutations and orderings with at least one pion or1 in
intermediate states are included.

connected via leading contact interactions and static pions. The various order-
ings of these diagrams cancel among themselves and against contributions from
the energy-dependent piece of the iteratedNN potential that appears at the same
order (6, 8, 10). Alternatively, redefining the potential to eliminate energy depen-
dence leads to no 3N TPE forces of this type at all (89). The only 3N forces
that remain to this order are generated by the1 isobar, if the1 is kept explicit
in the EFT. Atνmin + 3, further terms with similar structure arise (10, 11) (see
Figure 16).

If, instead, the1 is integrated out, its contributions appear through the para-
meters of the potential atν = νmin + 3. In this case, there are no 3N forces up
to ν = νmin + 3. Epelbaum et al. (106) used theν = νmin + 2 deltaless potential
of Reference (78) to predict properties of the 3N and 4N systems. The small
variation allowed in the cutoff does not permit firm conclusions about consistency
in renormalization. Low-energy 3N scattering observables and 3N and 4N binding
energies come out similar to conventional-potential results. An “Ay puzzle” plagues
conventional models: All potentials that fitNNdata well fall short of reproducing
the elastic neutron analyzing power,Ay, at energies as low as 3 MeV. This seems
to be the case with chiral potentials as well (107).

The leading 3Npotential (10) has components with three different ranges: TPE,
OPE/short-range, and purely short-range. (Relativistic corrections neglected below
are discussed in Reference (74).)

The TPE part of the potential is determined in terms ofπNscattering observables
(10). It is similar to the Tucson-Melbourne (TM) and Brazil potentials (108), but it
corrects a deficiency of the TM potential in regard to chiral symmetry (109). The
resulting TM′ potential has been studied in detail (110, 111). H¨uber et al. (111)
showed that one of the components of the force is dominant in 3Nelastic scattering
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observables. This explains why all existing TPE 3N forces give essentially the same
results for the 3N continuum after being fitted to the triton energy. This type of 3N
force does not much improve agreement forAy (111).

The novel OPE/short-range components of the potential involve twoπ (N̄N)2

interactions of strengths not determined by chiral symmetry alone (10). These pa-
rameters can be thought of as representing short-range effects such asσ andω ex-
changes with an intermediateN(1440) resonance, andρ exchange from aπρ Kroll-
Ruderman term (112). Because of the antisymmetry of the wave function, only
one combination of parameters contributes (I.W. Stewart, private communication;
E. Epelbaum, private communication). This combination can be determined from
reactions that involve only two nucleons, as discussed in Section 3.4 below. If this
combination has natural size, this force, in conjunction with TM′, can bridge a sig-
nificant part of the discrepancy between “realistic”NNpotentials andAy data (111).

The purely short-range components of the potential can be determined only
from few-nucleon systems (10). As we have seen (Section 2.2), the Pauli principle
leads to a single LEC. Once this LEC is determined from one 3N input (such as the
triton binding energy), all other observables (such asAy) can be predicted, once the
OPE/short-range component has been fixed by data involving just two nucleons.

It is apparent that the pionful EFT brings new forces into play, and these new
elements might resolve remaining issues in the description of data. This prospect
calls for a fully consistentνmin + 3 calculation with maximalNN input.

3.4. Processes with External Probes

The power counting arguments of Section 3.2.2 can be generalized to the case
where external probes with momentaQ ∼ MNN interact with few-nucleon systems.
The probes deposit an energy∼MNN onto the nuclear system, so that, if we define
the kernelK as the sum of irreducible diagrams to which the probes are attached,
the power counting (Equation 41) applies equally well toK . Interactions among
nucleons that occur before or after scattering can be treated as before: Iteration of
the potential gives rise to the wave function|ψ〉 (|ψ ′〉) of the initial (final) nuclear
state. The full scattering amplitude is then

T = 〈ψ ′|K |ψ〉. 57.

The pionful EFT can also handle scattering at smallerQ, of course, but then Equa-
tions 41 and 57 must be modified. When the deposited energy is∼M2

NN/mN—for
example, when the incoming probes are photons of momentaQ ∼ M2

NN/mN—
there can be intermediate few-nucleon states that are reducible, and the break-
down ofT into kernel and wave functions is more complicated (113). In this sit-
uation, a perturbative treatment of pions, or even better, the pionless EFT, should
suffice.

In practice, it is frequently desirable to minimize nuclear wave-function errors
by using a high-precision phenomenological potential. That this is a good approx-
imation is suggested by a comparison (76) between a simplified version of the
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EFT potential of Reference (9) and the Argonne V18 potential (90), which show
agreement in most aspects of the wave function. The cost of this “hybrid approach”
(8) is the introduction of an uncontrolled error due to a possible mismatch between
the off-shell extensions of the kernel and the potential. This error can, however, be
estimated by the use of several different phenomenological potentials of similar
quality.

As with few-nucleon forces, the factor−2C in Equation 41 implies that external
probes tend to interact predominantly with a single nucleon, simultaneous inter-
actions with more than one nucleon being suppressed by powers of (Q/MQCD)2.
Again, this generic dominance of the impulse approximation is a well-known re-
sult that arises naturally here. This is of course what allows extraction, to a certain
accuracy, of one-nucleon parameters from nuclear experiments. A valuable by-
product of the EFT is to provide a consistent framework for one- and few-nucleon
dynamics, whereby few-nucleon processes can be used to infer one-nucleon prop-
erties. More interesting from the purely nuclear-dynamics perspective, however,
are processes in which the leading single-nucleon contribution vanishes with a
particular choice of experimental conditions, for example the threshold region. In
this case, certainNNcontributions, especially in the relatively large deuteron, can
become important. Further examination of the structure of the chiral Lagrangian
reveals thatNN contributions tend to be dominated by pion exchange. Indeed,
photons and pions couple to 4N operators only atO(Q/MQCD) relative to pion-
exchange diagrams constructed out of the LO Lagrangian. Thus, power counting
justifies the “chiral filter hypothesis” that was put forward to summarize some em-
pirical results on electroweak form factors (114). This “pion dominance” ensures
thatNNcontributions from the EFT in lowest orders tend to be similar to those in
phenomenological models that include pion-exchange currents.

Many processes have been analyzed in the pionful EFT. Some of those processes
are extensions to higher energies of the same electroweak processes described in
Section 2.1. For example,

■ ed→ ed and deuteron form factors (115)
■ Eed → eNNand parity violation (116)
■ np → dγ and meson-exchange currents (117)
■ Enp → dγ and parity violation (118)
■ pp → de+νe and axial currents (119)
■ p 3He → 4He e+νe and solar neutrino production (120)
■ νd → lNN and solar neutrino detection (121)
■ µd → νµnnand its measured rate (122)
■ γ d → γ d and nucleon polarizabilities (113, 123)

For details, we refer the reader to more extensive reviews (18) and the original
papers. Here we briefly discuss the processes most germane to the pionful theory,
involving pions in initial and/or final states.
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3.4.1. πd →πd This reaction offers perhaps the most direct way to check the con-
sistency of EFT in one- and few-nucleon systems. For simplicity, consider the
region near threshold with the1 integrated out. There the lowest-order,ν =
νmin = −2 contributions to the kernel vanish because the pion is in answave and
the target is isoscalar. Theν = νmin + 1 term comes from the (small) isoscalar
pion-nucleon seagull, related in lowest order to the pion-nucleon isoscalar ampli-
tudeb(0). Theν = νmin + 2 contributions come from corrections toπN scattering
andNN diagrams, which involve not onlyb(0) but also the much larger isovec-
tor amplitudeb(1). These various contributions to theπd scattering length have
been estimated (8, 124) and found to agree with previous, more phenomenological
calculations, which have been used to extractb(0). Partial sets of higher-order cor-
rections have been evaluated (125) (see Reference (126) for the related, double-
charge-exchange process). A consistentν = νmin + 3 calculation ofπd elastic
scattering is in progress (127). Eventually, aν = νmin + 4 calculation might be
required in order to determine the chiral-symmetry breaking LECC(qm)

2 , discussed
further below in connection with lattice QCD. Charge-symmetry-breaking effects
were considered in Reference (128). An alternative approach with perturbative
pions (129) also seems to accommodate the available experimental data.

3.4.2. γ(∗)d → π0d The reactionγ (∗)d → π0d offers the possibility to test a pre-
diction arising from a combination ofNN contributions and the single-neutron
amplitude. The differential cross section for a photon of momentumk and longi-
tudinal polarizationεL to produce a pion of momentumq is, at threshold,[(

3k

8q

) (
dσ

dÄ

)]
q=0

= |Ed|2 + εL |Ld|2, 58.

where the electric dipole amplitudeEd(k2) characterizes the transverse response
andLd(k2) the longitudinal response.

Ed(0) was studied up toν = νmin + 3 with the1 integrated out (130). Contri-
butions are classified according to whether the external light particles interact with
one or with both nucleons. The one-nucleon part of the kernel is given by standard
A = 1 χPT, with due account ofP waves and Fermi motion inside the deuteron.
The neutrality of the outgoings-wave pion ensures that the leadingν = −2 = νmin

terms vanish. The firstNN part of the kernel appears atν = νmin + 2; it comes
from a virtual charged pion photoproduced on one nucleon that rescatters on the
other nucleon with charge exchange. These contributions are actually numerically
larger than indicated by power counting because of the relatively large deuteron
size. SmallerNN terms appear atν = νmin + 3 from corrections in either nucleon.
Results forEd(0) up toν = νmin + 3 (130) are shown in Table 2. They correspond
to the Argonne V18 potential (90) and a cutoff3 = 1000 MeV. Other realistic
potentials and cutoffs from 650 to 1500 MeV give the same result within 5%.
The chiral potentials of Section 3.2.3 are more cumbersome to use, but they yield
results similar to those of other potentials. Two-nucleon contributions seem to
be converging, although more convincing evidence would come from next order,
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TABLE 2 Values forEd(0) in units of 10−3/mπ+ from one-nucleon
contributions (N) up toν = νmin + 3, two-nucleon kernel (NN) at
ν = νmin + 2 and atν = νmin + 3, and their sum (N+ NN)

NNN N + NN
ν≤νmin + 3 ν=νmin + 2 ν=νmin + 3 ν≤νmin + 3

0.36 −1.90 −0.25 −1.79

where loops appear. A model-dependent estimate (131) of someν = νmin+4 terms
suggests a 10% or larger error from neglected higher orders in the kernel itself. The
single-scattering contribution depends on the amplitude forγ n → π0n, E(π0n)

0+ ,
in such a way thatEd(0)∼ −1.79− 0.38(2.13− E(π0n)

0+ ) in units of 10−3/mπ+ .
Thus, sensitivity toE(π0n)

0+ survives the largeNN contribution atν = νmin + 2.
We see that working within the EFT yields a testable prediction,Ed(0) =

−(1.8± 0.2) · 10−3/mπ+ (130). It is remarkable that, for this process, EFT results
differ significantly from tree-level models of the type traditionally used in nuclear
physics. For example, the models in Reference (132) predict the threshold cross
section to be about twice as large as predicted by EFT. Most of the difference comes
from one-nucleon loop diagrams; tree-level models tend to differ fromχPT mostly
by having a smallerE(π0n)

0+ , which increases|Ed|. A test of this prediction—an
important check of our understanding of the role of QCD at low energies—was
carried out at Saskatoon (133). Figure 17 shows the experimental results for the
pion photoproduction cross section near threshold, along with the EFT prediction
at threshold (130). Estimated inelastic contributions (133, 134) are smaller than
10% throughout the range of energies shown. At threshold, Reference (133) finds
Ed(0) = −(1.45± 0.09) · 10−3/mπ+ . Although agreement with the EFT to order
ν = νmin + 3 is not better than a reasonable estimate of higher-order terms, it is
clearly superior to tree-level models. This is compelling evidence of chiral loops.

A further test of the EFT comes from the coherent neutral-pion electroproduc-
tion on the deuteron.Ed(k2) andLd(k2) were predicted toν = νmin + 2 (with no
new free parameters) (135), for momentum transfer in the range 0–0.1 GeV2.
BecauseE(π0 p)

0+ is not well-reproduced at this order, only thek2 dependence can
be tested. This reaction was measured atk2 = −0.1 GeV2 in Mainz (136), and
values for|Ed(−0.1)| and|Ld(−0.1)| were extracted. If they are compared with
the results from Reference (135) simply shifted by ak2-independent amount in
order to reproduce theEd(0) of theν = νmin + 3 calculation, then there is good
agreement for|Ed(−0.1)|, but |Ld(−0.1)| fails by a factor of two (136). Because
the calculatedLd(k2) is not dominated by a single mechanism to the extentEd(k2)
is, it is possible that it suffers from stronger corrections in next order. An extension
of these calculations to higher order and beyond threshold is highly desirable.

3.4.3. NN → NNπ The reactionNN → NNπ has attracted great interest because
standard phenomenological mechanisms fail to reproduce the small cross section
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Figure 17 Reduced cross sectionσR = (k/q)σ for neutral-pion photoproduction
as a function of the photon energy. Threshold is marked by a dotted line. The star
at threshold is the EFT prediction (130), and squares are data points (133). (Figure
courtesy of U.-G. Meißner.)

observed near threshold. This reaction involves larger momenta ofO(
√

mπmN),
so the relevant expansion parameter here is not so small, (mπ/mN )

1
2 . This pro-

cess is therefore not a good testing ground for EFT ideas. But (mπ/mN )
1
2 is still

<1, so at least in some formal sense we can perform a low-energy expansion.
In References (137) and (138), the chiral expansion was adapted to this reaction
and the first few contributions were estimated. [Note that—contrary to what is
stated in Reference (139)—momenta∼√

mπmN do not necessarily imply a break-
down of the nonrelativistic expansion, sincep4/m3

N ∼ (mπ/mN )(p2/mN ) is still
small.]

Initial attention concentrated onpp → ppπ0 at threshold. The lowest-order
terms all vanish, and the formally leading nonvanishing terms—an impulse term
and a similar diagram from the1 isobar—are anomalously small and partly cancel.
Accordingly, the bulk of the cross section must arise from contributions that are
relatively unimportant in other processes: isoscalar pion rescattering, TPE, and
high-order short-rangeπ (N̄N)2 terms. Whereas the first two contributions are
calculable, the third involves LECs that can only be fitted or modeled. These LECs
can be thought of as originating from heavier-meson exchange: pair diagrams with
σ andω exchange, and aπρω coupling, among other, smaller terms (140). Van
Kolck et al. (140) showed that a large uncertainty comes from the short-range
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features of the wave function, so a more systematic study awaits the development
of chiral potentials that are accurate at the relevant energies. Other EFT studies
of this channel, including attempts to compute TPE, can be found in Reference
(141).

More problematic is the situation with the threshold cross section of the less-
suppressed channelsNN → dπ and → pnπ . In those channels, the Weinberg-
TomozawaππNN term, fixed by chiral symmetry, dominates. Wave-function de-
pendence is much smaller, yet a calculation that includes leading and some sub-
leading contributions underpredicts the data by a factor of∼2 (142). A calculation
that includes TPE is badly needed.

Despite these problems, much can be learned from this reaction in the thresh-
old region. One example is charge-symmetry breaking. The nucleon mass split-
ting comes from both the quark-mass-difference and electromagnetic effects,
1mN = δmN + δ̄mN, with δmN = O(εm2

π/MQCD) andδ̄mN = O(αMQCD/π ). De-
termining the two LECsδmN andδ̄mN separately is interesting for several reasons:
Coupled to a lattice evaluation ofδmN, it can be used to extract quark masses; it can
test quark models that evaluateδ̄mN; and it can constrain a possible time variation
of α because4He nucleosynthesis is sensitive to1mN. These LECs contribute in
combinations other than1mN to processes involving pions because the two opera-
tors that generate the nucleon mass difference have different chiral partners, which
involve an even number of pions. Unfortunately, these LECs are hard to measure
directly inπN scattering. The forward-backward asymmetry innp → dπ0, on the
other hand, is sensitive to the charge-symmetry breaking from these operators, and
it has been calculated (143). Because the asymmetry is related to a ratio of ampli-
tudes, some of the uncertainties in the strong-interaction physics are reduced. The
asymmetry is being measured at TRIUMF (144), at a level that could allow for an
observation of the quark-mass-difference effect. A related experiment,dd → απ0,
which can address the same issues but with different theoretical uncertainties, has
been proposed at the Indiana University Cyclotron Facility (IUCF) (145).

It is possible that some of the problems encountered at threshold stem from the
smallness of pions waves, which show poor convergence also inA = 1 χPT—
for example, in neutral pion photoproduction on the proton. Indeed,p-wave pion
production seems better behaved. Reference (138) calculates the first two orders
of the cross section for thepp → ppπ0 reaction with initial nucleons in the spin
S = 1 state in the direction of the incoming center-of-mass momentum, as a
function of the outgoing pion momentum in the range 0.5–1mπ . With no free
parameters, good convergence and reasonable agreement with data are found. It
was also pointed out that other observables would, at that order, be sensitive to
a combination ofπ (N̄N)2 LECs that affects the leading 3N force, discussed in
Section 3.3. In particular, the amplitude for the1S0 → (3S1 − 3D1)p transition,
which vanishes in LO, is very sensitive to this LEC. This amplitude, extracted
from thepp → pnπ+ data for pion momenta in the range 0.2–0.5mπ , can be fitted
quite well with a natural-sized LEC (138). This value for the LEC can be used in
the 3N potential to improve the predictive power of the chiral potential.
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All calculations of pion-production observables have involved approximations
necessary to match the kernel and wave functions. A critical discussion of these
approximations can be found in Reference (146). Issues such as the size of the
contribution of theπNNcut, not well accounted for in the common approximations,
need to be better understood. Pion production is wide open for further development.

3.5. Connection with Lattice QCD

How can we deduce nuclear physics from QCD? As we have seen, light nuclei
are large objects of size∼1/MNN À 1/MQCD or larger. Dynamics at this scale
can be understood within the EFT, and all nuclear information is encoded in the
parameters of the EFT Lagrangian. These parameters, in turn, are fixed by the
physics of smaller distances. If the EFT can somehow be matched onto QCD at
some scale not far belowMQCD, the EFT can be used to predict all of traditional
nuclear physics. The EFT allows us to bridge the gap from the QCD Lagrangian
to nuclear physics in two stages, according to the two energy scales.

At present, the best hope for a solution of QCD in the regime of large coupling
constant relevant for nuclear physics is an explicit numerical solution on the lattice.
However, the large size of nuclei makes their direct simulation practically and
intellectually unsound. A more reasonable goal is to match lattice QCD with the
EFT, which requires lattices not much larger than 1/MQCD. We are still far from
this goal, but a few steps have already been taken.

One obstacle arises from the difficulty in simulating small pion masses. For
example, Reference (147) computes the1S0 and3S1 scattering lengths in quenched
QCD withmπ & 500 MeV.

The pion-mass dependence of nuclear forces comes in explicitly from pion
propagators in pion exchange, and implicitly from short-range interactions. For
illustration, Figure 18 exhibits the deuteron binding energy and the3S1 scattering

Figure 18 The deuteron binding energy (left panel) and the3S1 scattering length (right
panel) as functions of the pion mass that explicitly appears in the OPE potential. Implicit
pion-mass dependence was not calculated: Other parameters were set to their physical values
for all mπ . The dots are quenched lattice QCD data. (From Reference (83) with permission
from Elsevier Science.)
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length that stem from the leading explicitmπ dependence in the expansion around
the chiral limit (83). A higher-order two-derivative contact interaction was also
included and fitted to the triplet effective range. For the physical value of the
pion mass, one gets the deuteron binding energy to reasonable accuracy,Bd =
2.211 MeV (essentially independent of the cutoffR). In the chiral limit, the
deuteron is bound byB0

d ' 4.2 MeV. This value is still somewhat small com-
pared with f 2

π /2mN ∼ 10 MeV, which one might expect to arise in QCD, and
therefore one would conclude that the deuteron is still weakly bound in the chiral
limit! This calculation of the explicitmπ dependence agrees with that obtained with
the AV18 potential (R. Wiringa, private communication) withmπ = 0, namely
B0(AV18)

d ' 4.1 MeV. Figure 18 also shows the lattice data for the triplet scattering
length from Reference (147).

Phenomenological models typically can only varymπ in OPE, but all aspects
of mπ dependence can in principle be determined in the pionful EFT. Since the
pion mass can be varied up toMQCD, the EFT can be used to extrapolate lattice
results to realistic values ofmπ . It was pointed out (83) that the leading (implicit
as well as explicit)mπ dependence of nuclear forces can be calculated once the
chiral-symmetry-breaking LECC(qm)

2 is known. That is because the leadingmπ

dependence infπ , gA, andmN is known fromχPT. Unfortunately, determination
of C(qm)

2 requires calculation of processes that involve external pions—e.g.,πd
scattering (see Section 3.4.1)—at high orders and, consequently, demands precise
low-energy data. Alternatively, one can imagine fittingC(qm)

2 to the lattice data
themselves.

Note that in Figure 18, we illegally compared the EFT with quenched QCD.
Most simulations cannot yet be done in QCD itself, but only in quenched or,
more generally, partially quenched QCD, where different masses are assigned to
valence and sea quarks. Partially quenched QCD has a different symmetry pattern
than QCD, a different low-energy dynamics, and thus a different dependence on
the pion mass. A proper extrapolation of partially quenched QCD data to smaller
pion masses requires a partially quenched EFT. Implications of partially quenched
EFT for theNN interaction are discussed in Reference (148).

4. OUTLOOK

4.1. More-Nucleon Systems

The EFT paradigm has been extensively applied to systems withA = 2–4, for
momenta below and above the pion mass. Work remains to be done even for those
systems, of course. For example, the chiral expansion of the pionful EFT still needs
to be better understood forA = 2, 3; andA = 4 must be studied in the pionless
EFT in order to uncover the role of a 4N force that could appear in LO.

As these issues get settled, a natural next step for the EFT program is to increase
A. There have, in fact, been attempts to extend the paradigm to heavier nuclei. For
example, EFT methods are being used to perfect the nuclear shell model (149).
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The goal is to take some modern potential model and simplify the bound-state
problem for large nuclei so as to make a numerical solution of the Schr¨odinger
equation feasible. This simplification comes about by reducing the dimensionality
of the original Hilbert space of the shell model, the effect of the highly excited
states being included into local operators that act on a reduced Hilbert space. The
reduced problem obtained by “integrating out” the high-energy modes can then be
solved by standard numerical methods.

Another approach is to develop an EFT to handle other nuclei that are, like
the deuteron, particularly lightly bound (150)—such as halo nuclei, in which the
separation energy of one or more nucleons is much smaller than the energies
associated with a core of the remaining nucleons.

The many EFT-inspired studies of nuclear matter (A → ∞, α = 0) and very
heavy nuclei have all sought to identify the relevant degrees of freedom and an
expansion parameter that can describe physics for densities near saturation (see
e.g. Reference 151). Whether these approaches prove to be bona fide EFTs (in
the sense used in this review) or not, the formidable problem remains of deriving
the saturation of nuclear matter from an EFT adjusted to describe few-nucleon
physics. The complexity of the necessary resummations of LO operators increases
rapidly with A, becoming high already atA = 5. Lacking the identification of a
further expansion parameter, we might, as in QCD itself, have to resort to lattice
simulations. Müller et al. (152) have taken a step in this direction, solving a toy
model with no- and two-derivative contact two-body interactions (at zero and at
finite temperature) on a spatial lattice using Monte Carlo techniques, and fitting
the interaction parameters to saturation properties. The next step involves using
EFT interactions determined from few-nucleon systems.

4.2. Conclusion

For the past couple of years, the pionless EFT has been developed and applied to
2N and 3N systems. Although for theNNsystem in isolation it amounts to nothing
more than effective range theory, the full power of the field-theory arsenal comes to
fruition when more nucleons and/or external probes are considered. We have seen
that the extension to the 3N system is full of surprises, such as the appearance of
limit-cycle behavior and of a relevant three-body force. These surprises have been
turned into successes, and relatively simple calculations yield results of quality
not inferior to polished potential models. Although limited in energy, this EFT can
achieve high precision for reactions of interest to astrophysics, such asnp → dγ .

The older EFT including the pion field is less well understood. There are hints
that the expansion should be made around the chiral limit, but higher orders must
be studied. Among the higher-order terms, one LEC,C(qm)

2 , is the main uncertainty
in the extrapolation to the chiral and heavy-pion limits. External probes might be
able to determine this LEC. Anyhow, considerable progress has been achieved in
the development of the EFTNN potential. Isospin-violating effects are a unique
virtue of the pionful EFT because they are so tightly linked to the pattern of
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QCD symmetries. Issues remain regarding the size of short-range 3N forces, but
novel longer-range 3N forces naturally appear and can play an important role in
nuclear dynamics. Reference (153) assesses this progress from the perspective of
the historical development of nuclear potentials.

Yet, most nuclei still await us.
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